Background. Obesity is a chronic low-grade systemic inflammation state, which causes insulin resistance, diabetes, and other metabolic diseases. Baicalin is known to have anti-inflammatory and antiobesity effects. In this study, we investigated the cellular and molecular immunological effects of baicalin on obesity-induced inflammation. Methods. Male C57BL/6 mice were assigned to four groups: the normal chow, high-fat diet (HFD), BC2 (HFD + baicalin 200 mg/kg), and BC4 (HFD + baicalin 400 mg/kg) group; the three groups except normal chow were fed with a high-fat diet for 8 weeks to induce obesity followed by baicalin treatment with two doses for 8 weeks. The body weight, epididymal fat weight, liver weight, food intake, oral glucose tolerance test (OGTT), oral fat tolerance test (OFTT), and serum lipids were measured. We evaluated insulin resistance by measuring the serum insulin level and homeostatic model assessment of insulin resistance (HOMA-IR). Also, the major obesity-associated immune cells including monocytes, macrophages, T lymphocytes, and dendritic cells in the blood, fat, and liver and the inflammatory and insulin signaling-related gene expressions in the fat and liver were evaluated. Results. Baicalin significantly reduced the body weight and liver weight and improved serum fasting glucose, insulin, HOMA-IR, free fatty acid, HDL cholesterol, and the levels of glucose and triglyceride at each time point in the OGTT and OFTT. In the analysis of immune cells, baicalin significantly decreased inflammatory Ly6Chi monocytes, M1 adipose tissue macrophages (ATMs), and M1 Kupffer cells. On the contrary, baicalin increased anti-inflammatory M2 ATMs and liver CD4+ T cells and CD4/CD8 ratio. In the analysis of inflammatory and insulin signaling molecules, baicalin significantly downregulated the gene expression of tumor necrosis factor-α, F4/80, and C-C motif chemokine 2 while upregulated the insulin receptor mRNA expression. Conclusion. From these results, baicalin can be a promising treatment option for obesity and its related metabolic diseases based on its anti-inflammatory property.
Obesity causes low-grade inflammation that results in dyslipidemia and insulin resistance. We evaluated the effect of puerarin on obesity and metabolic complications both in silico and in vivo and investigated the underlying immunological mechanisms. Twenty C57BL/6 mice were divided into four groups: normal chow, control (HFD), HFD + puerarin (PUE) 200 mg/kg, and HFD + atorvastatin (ATO) 10 mg/kg groups. We examined bodyweight, oral glucose tolerance test, serum insulin, oral fat tolerance test, serum lipids, and adipocyte size. We also analyzed the percentage of total, M1, and M2 adipose tissue macrophages (ATMs) and the expression of F4/80, tumor necrosis factor-α (TNF-α), C-C motif chemokine ligand 2 (CCL2), CCL4, CCL5, and C-X-C motif chemokine receptor 4. In silico, we identified the treatment-targeted genes of puerarin and simulated molecular docking with puerarin and TNF, M1, and M2 macrophages based on functionally enriched pathways. Puerarin did not significantly change bodyweight but significantly improved fat pad weight, adipocyte size, fat area in the liver, free fatty acids, triglycerides, total cholesterol, and HDL-cholesterol in vivo. In addition, puerarin significantly decreased the ATM population and TNF-α expression. Therefore, puerarin is a potential anti-obesity treatment based on its anti-inflammatory effects in adipose tissue.
Obesity is characterized as a chronic, low-grade inflammation state accompanied by the infiltration of immune cells into adipose tissue and higher levels of inflammatory cytokines and chemokines. This study aimed to investigate the mechanisms and effects of Coptidis Rhizoma (CR) on obesity and its associated inflammation. First, we applied a network pharmacology strategy to search the target genes and pathways regulated by CR in obesity. Next, we performed in vivo experiments to confirm the antiobesity and anti-inflammatory effects of CR. Mice were assigned to five groups: normal chow (NC), control (high-fat diet (HFD)), HFD + CR 200 mg/kg, HFD + CR 400 mg/kg, and HFD + metformin 200 mg/kg. After 16 weeks of the experimental period, CR administration significantly reduced the weight of the body, epididymal fat, and liver; it also decreased insulin resistance, as well as the area under the curve of glucose in the oral glucose tolerance test and triglyceride in the oral fat tolerance test. We observed a decrease in adipose tissue macrophages (ATMs) and inflammatory M1 ATMs, as well as an increase in anti-inflammatory M2 ATMs. Gene expression levels of inflammatory cytokines and chemokines, including tumor necrosis factor-α, F4/80, and C-C motif chemokine (CCL)-2, CCL4, and CCL5, were suppressed in adipose tissue in the CR groups than levels in the control group. Additionally, histological analyses suggested decreased fat accumulation in the epididymal fat pad and liver in the CR groups than that in the control group. Taken together, these results suggest that CR has a therapeutic effect on obesity-induced inflammation, and it functions through the inhibition of macrophage-mediated inflammation in adipose tissue.
Objectives: The combined use of herbal and Western medicine is increasing. However, herbal medicine is highly likely to interact with Western medicine making it important to understand the effects of co-administration. This study investigates the ratio of patients who take Western medicine with herbal medicine, the types of medicines commonly prescribed together, and the results of hospital examinations. Methods: We investigated patients who were hospitalized at Kyung Hee University Korean Medical Hospital for at least one day from January 1, 2010 to December 31, 2017. There were some inclusion criteria. First, we chose patients aged 19 and over. Second, we chose patients who were diagnosed with osteoarthritis (OA) with diagnosis codes M13, M15, M17 according to KCD-7. Third, patients had liver function tests, renal function tests, and general hematology tests performed at least two times during hospitalization. Results: Among a total of 131 OA patients, 32 (24.4%) patients were treated with herbal-Western medicine combination therapy. The most commonly prescribed herbal medicine was Daegalwhal-tang, and the most commonly prescribed Western medicine was celecoxib. In the laboratory findings, all liver function tests, renal function tests, and general hematology tests showed no difference compared to admission day. There were also no differences between herbal medicine single treatment and herbal-Western medicine combination treatment. Conclusions: From these results, we suggest that herbal medicine single treatment and herbal-Western medicine combination treatment for OA patients does not cause adverse effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.