Due to an oversight of the editorial office, a mistake was introduced in the references on page 3919, right column, at the start of the fourth paragraph. In the published paper the text segment on page 3919 reads: As mentioned, graphene can be grown on metal surfaces by surface segregation of carbon or by decomposition of hydrocarbons. However, this technique is only practical for graphene production if the as-grown graphene can be transferred from the metal substrates to other substrates, which looks straightforward but only was realized for multilayer and non-uniform films recently with Ni [160-162] and for uniform monolayer graphene, with Cu. [17] However, reference 160 does not relate to graphene segregation on metal surfaces. The authors first to report this technique were Qingkai Yu and co-workers as described in reference 246. Consequently, the start of the fourth paragraph on page 3919 should be corrected to read as follows: As mentioned, graphene can be grown on metal surfaces by surface segregation of carbon or by decomposition of hydrocarbons. However, this technique is only practical for graphene production if the as-grown graphene can be transferred from the metal substrates to other sub-strates, which looks straightforward but only was realized for multilayer and non-uniform films recently with Ni, [246,161,162] and for uniform monolayer graphene, with Cu. [17] The editorial office apologizes for any inconvenience caused. In addition, reference 160 was not published in 2009, so reference 160 should read: [160] J.
Reproducible dry and wet transfer techniques were developed to improve the transfer of large-area monolayer graphene grown on copper foils by chemical vapor deposition (CVD). The techniques reported here allow transfer onto three different classes of substrates: substrates covered with shallow depressions, perforated substrates, and flat substrates. A novel dry transfer technique was used to make graphene-sealed microchambers without trapping liquid inside. The dry transfer technique utilizes a polydimethylsiloxane frame that attaches to the poly(methyl methacrylate) spun over the graphene film, and the monolayer graphene was transferred onto shallow depressions with 300 nm depth. The improved wet transfer onto perforated substrates with 2.7 μm diameter holes yields 98% coverage of holes covered with continuous films, allowing the ready use of Raman spectroscopy and transmission electron microscopy to study the intrinsic properties of CVD-grown monolayer graphene. Additionally, monolayer graphene transferred onto flat substrates has fewer cracks and tears, as well as lower sheet resistance than previous transfer techniques. Monolayer graphene films transferred onto glass had a sheet resistance of ∼980 Ω/sq and a transmittance of 97.6%. These transfer techniques open up possibilities for the fabrication of various graphene devices with unique configurations and enhanced performance.
The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16,000 cm(2) V(-1) s(-1) at room temperature.
Mechanical properties of ultrathin membranes consisting of one layer, two overlapped layers, and three overlapped layers of graphene oxide platelets were investigated by atomic force microscopy (AFM) imaging in contact mode. In order to evaluate both the elastic modulus and prestress of thin membranes, the AFM measurement was combined with the finite element method (FEM) in a new approach for evaluating the mechanics of ultrathin membranes. Monolayer graphene oxide was found to have a lower effective Young's modulus (207.6 ± 23.4 GPa when a thickness of 0.7 nm is used) as compared to the value reported for "pristine" graphene. The prestress (39.7-76.8 MPa) of the graphene oxide membranes obtained by solution-based deposition was found to be 1 order of magnitude lower than that obtained by others for mechanically cleaved graphene. The novel AFM imaging and FEM-based mapping methods presented here are of general utility for obtaining the elastic modulus and prestress of thin membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.