This paper treats a robust adaptive trajectory-tracking control design for a rotorcraft using a high-fidelity math model subject to model uncertainties. In order to control the nonlinear rotorcraft model which shows strong inter-axis coupling and high nonlinearity, incremental backstepping approach with state-dependent control effectiveness matrix is utilized. Since the incremental backstepping control suffers from performance degradation in the presence of control matrix uncertainties due to change of flight conditions, control system robustness is improved by combining the least squares parameter estimator to estimate time varying uncertainties contained in the control effectiveness matrix. Also, by selecting a suitable gain set by investigating the error dynamics, a uniform trajectory-tracking performance over operational flight envelope of the rotorcraft is ensured without resorting to the conventional gain scheduling method. To evaluate the proposed controller, comparative results between IBSC and Adaptive IBSC are provided in this paper with sequential maneuvers from the ADS-33E-PRF. The proposed method shows improved tracking performance under variations in control effective matrix in the flight simulation. Robust and stable parameter estimation is also guaranteed due to the implementation of the DF-RLS algorithm for the least squares estimator.
Recently, interest in mission autonomy related to Unmanned Combat Aerial Vehicles(UCAVs) for performing highly dangerous Air-to-Surface Missions(ASMs) has been increasing. Regarding autonomous mission planners, studies currently being conducted in this field have been mainly focused on creating a path from a macroscopic 2D environment to a dense target area or proposing a route for intercepting a target. For further improvement, this paper treats a mission planning algorithm on an ASM which can plan the path to the target dense area in consideration of threats spread in a 3D terrain environment while planning the shortest path to intercept multiple targets. To do so, ASMs are considered three sequential mission elements: ingress, intercept, and egress. The ingress and egress elements require a terrain flight path to penetrate deep into the enemy territory. Thus, the proposed terrain flight path planner generates a nap-of-the-earth path to avoid detection by enemy radar while avoiding enemy air defense threats. In the intercept element, the shortest intercept path planner based on the Dubins path concept combined with nonlinear programming is developed to minimize exposure time for survivability. Finally, the integrated ASM planner is applied to several mission scenarios and validated by simulations using a rotorcraft model.
This study presents the unified high-fidelity flight dynamic modeling technique for compound aircraft. The existing flight dynamic modeling technique is absolutely depended on the experimental data measured by wind tunnel. It means that the existing flight dynamic model cannot be used for analyzing a new configuration aircraft. The flight dynamic modeling has to be implemented when a performance analysis has to be performed for new type aircraft. This technique is not effective for analyzing the performance of the new configuration aircraft because the shapes of compound aircraft are very various. The unified high-fidelity flight dynamic modeling technique is developed in this study to overcome the limitation of the existing modeling technique. First, the unified rotor and wing models are developed to calculate the aerodynamic forces generated by rotors and wings. The revolutions per minute (RPM) and pitch change with rotation direction are addressed by rotor models. The unified wing model calculates the induced velocity by using the vortex lattice method (VLM) and the Biot–Savart law. The aerodynamic forces and moments for wings and rotors are computed by strip theory in each model. Second, the performance analysis such as propeller performance and trim for compound aircraft is implemented to check the accuracy between the proposed modeling technique and the helicopter trim, linearization, and simulation (HETLAS) program which is validated. It is judged that this study raises the efficiency of aircraft performance analysis and the airworthiness evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.