Since severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) share similar characteristics with respect to clinical signs, etiology, and transmission, methods for a rapid and accurate differential diagnosis are important. Therefore, the aim of this study was to develop a duplex real-time reverse transcription (RT)-PCR method for the simultaneous detection of these viruses. Primers and probes that target the conserved spike S2 region of human SARS-CoV, MERS-CoV, and their related bat CoVs were designed. The results of real-time RT-PCR showed specific reactions for each virus with adequate detection limits of 50-100 copies/mL and 5-100 copies/mL using pUC57-SARS-pS2 (a template for SARS-CoV) and pGEM-MERS-S2 (a template for MERS-CoV), respectively. In addition, this real-time RT-PCR system was able to detect the target viruses SARS-like bat CoV and MERS-CoV in bat fecal samples and sputum of MERS patients, respectively. Therefore, this newly developed real-time RT-PCR method is expected to detect not only SARS-CoV and MERS-CoV in humans but also several bat CoVs that are closely related to these viruses in bats.
Bat species around the world have recently been recognized as major reservoirs of several zoonotic viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), Nipah virus and Hendra virus. In this study, consensus primer-based reverse transcriptase polymerase chain reactions (RT-PCRs) and high-throughput sequencing were performed to investigate viruses in bat faecal samples collected at 11 natural bat habitat sites from July to December 2015 in Korea. Diverse coronaviruses were first detected in Korean bat faeces, including alphacoronaviruses, SARS-CoV-like and MERS-CoV-like betacoronaviruses. In addition, we identified a novel bat rotavirus belonging to group H rotavirus which has only been described in human and pigs until now. Therefore, our results suggest the need for continuing surveillance and additional virological studies in domestic bat.
The bat paramyxovirus B16-40 was first isolated in Korea in this study. Using the isolated virus, we could obtain not only genomic information, but also several biological characteristics of the virus. In the phylogenetic analysis, the virus was found to belong to the recently proposed genus Shaanvirus. Through sequence analyses and in vitro testing, the isolated virus was also found to have haemagglutinin-neuraminidase (HN) protein as one of the structural proteins. When mouse antiserum was generated against the isolated virus and tested, it was cross-reactive to human parainfluenza virus 1 in an indirect immunofluorescence assay but could not cross-neutralize human parainfluenza virus 1. In addition, the bat paramyxovirus B16-40 was not infectious in the mouse model. Collectively, this study provided basic information on further classification of the bat paramyxovirus B16-40 and related viruses in the proposed genus Shaanvirus.
Coronaviruses (CoVs) are the largest groups of positive-sense, single-stranded RNA viruses belonging to the Coronaviridae family. CoVs are divided into four genera, alpha-, beta-, gamma-and delta-coronaviruses (de Groot et al., 2011). Many species of CoVs exist among mammals and birds. Alpha-and betacoronavirus have been reported only in mammals so far and can cause respiratory and gastrointestinal diseases with high mortality rates, for example transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhoea virus (PEDV) in young pigs, severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and Middle East Respiratory syndrome coronavirus (MERS-CoV) in humans (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.