The efficiency factor (η) and the instability factor ([Formula: see text] in deformation processing maps are regarded as the reliable indices of formability during high-temperature deformation. Deformation processing maps are primarily based on strain rate sensitivity ( m) and are usually created by high-temperature compression tests. To analyze the effect of the mode of flow on the deformation processing map, deformation processing maps based on both compressive and tensile flow curves for 304L stainless steel were determined and compared in the current study. As the instantaneous strain rate varies during both the tensile and compression tests when a constant crosshead speed is used, strain rate compensated deformation processing maps have been determined and compared. In addition, the frictional effect of barreling during compression testing on the deformation processing map has been analyzed. Both deformation processing maps based on either compressive or tensile flow curves are estimated to be complementary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.