All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb) can be embedded into a "cation cascade" to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average value, 20.2%) on small areas (and a stabilized 19.0% on a cell 0.5 square centimeters in area) as well as an electroluminescence of 3.8%. The open-circuit voltage of 1.24 volts at a band gap of 1.63 electron volts leads to a loss in potential of 0.39 volts, versus 0.4 volts for commercial silicon cells. Polymer-coated cells maintained 95% of their initial performance at 85°C for 500 hours under full illumination and maximum power point tracking.
Three-dimensional
(3D) perovskite materials display remarkable
potential in photovoltaics owing to their superior solar-to-electric
power conversion efficiency, with current efforts focused on improving
stability. Two-dimensional (2D) perovskite analogues feature greater
stability toward environmental factors, such as moisture, owing to
a hydrophobic organic cation that acts as a spacer between the inorganic
layers, which offers a significant advantage over their comparatively
less stable 3D analogues. Here, we demonstrate the first example of
a formamidinium (FA) containing Dion–Jacobson 2D perovskite
material characterized by the BFA
n–1Pb
n
I3n+1 formulation
through employing a novel bifunctional organic spacer (B), namely
1,4-phenylenedimethanammonium (PDMA). We achieve remarkable efficiencies
exceeding 7% for (PDMA)FA2Pb3I10 based
2D perovskite solar cells resisting degradation when exposed to humid
ambient air, which opens up new avenues in the design of stable perovskite
materials.
Zn-TFSI2 is introduced as a powerful p-dopant for spiro-MeOTAD in perovskite solar cells which not only outperforms Li-TFSI but also achieves outstanding long term stability.
Optimizing the morphology of metal halide perovskite films is an important way to improve the performance of solar cells when these materials are used as light harvesters, because film homogeneity is correlated with photovoltaic performance. Many device architectures and processing techniques have been explored with the aim of achieving high-performance devices, including single-step deposition, sequential deposition and anti-solvent methods. Earlier studies have looked at the influence of reaction conditions on film quality, such as the concentration of the reactants and the reaction temperature. However, the precise mechanism of the reaction and the main factors that govern it are poorly understood. The consequent lack of control is the main reason for the large variability observed in perovskite morphology and the related solar-cell performance. Here we show that light has a strong influence on the rate of perovskite formation and on film morphology in both of the main deposition methods currently used: sequential deposition and the anti-solvent method. We study the reaction of a metal halide (lead iodide) with an organic compound (methylammonium iodide) using confocal laser scanning fluorescence microscopy and scanning electron microscopy. The lead iodide crystallizes before the intercalation of methylammonium iodide commences, producing the methylammonium lead iodide perovskite. We find that the formation of perovskite via such a sequential deposition is much accelerated by light. The influence of light on morphology is reflected in a doubling of solar-cell efficiency. Conversely, using the anti-solvent method to form methyl ammonium lead iodide perovskite in a single step from the same starting materials, we find that the best photovoltaic performance is obtained when films are produced in the dark. The discovery of light-activated crystallization not only identifies a previously unknown source of variability in opto-electronic properties, but also opens up new ways of tuning morphology and structuring perovskites for various applications.
Controlling the morphology and surface passivation in perovskite solar cells is paramount in obtaining optimal optoelectronic properties. This study incorporates N-doped graphene nanosheets in the perovskite layer, which simultaneously induces an improved morphology and surface passivation at the perovskite/spiro interface, resulting in enhancement in all photovoltaic parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.