In recent years, bone tissue engineering has emerged as a promising solution for large bone defects. Additionally, the emergence and development of the smart metamaterial, the advanced optimization algorithm, the advanced manufacturing technique, etc. have largely changed the way how the bone scaffold is designed, manufactured and assessed. Therefore, the aim of the present study was to give an up-to-date review on the design, manufacturing and assessment of the bone scaffold for large bone defects. The following parts are thoroughly reviewed: 1) the design of the microstructure of the bone scaffold, 2) the application of the metamaterial in the design of bone scaffold, 3) the optimization of the microstructure of the bone scaffold, 4) the advanced manufacturing of the bone scaffold, 5) the techniques for assessing the performance of bone scaffolds.
In recent years, the triply periodic minimal surface (TPMS)-based scaffolds have been served as one of the crucial types of structures for biological replacements, the energy absorber, etc. Meanwhile, the development of additive manufacturing (AM) has facilitated the production of TPMS scaffolds with complex microstructures. However, the design maps of TPMS scaffolds, especially considering the AM constraints, remain unclear, which has hindered the design and application of TPMS scaffolds. The aims of the present study were to develop an efficient computational modeling framework for investigating the design maps of TPMS scaffolds simultaneously considering the AM constraints, the biological requirements, and the structural anisotropy. To demonstrate the computational framework, five widely-used topologies of the TPMS-based scaffolds (i.e. the Diamond, the Gyroid, the Fischer-Koch S, the F-RD, and the Schwarz P) were used, whose design maps for the surface-to-volume ratio and the effective elastic modulus were also investigated. The results showed that as the porosities increase, the design ranges of the surface-to-volume ratios decreases for all the structures. Compared with the effect of the constraint for the pore size, the minimal structural thickness for AM constraint has a greater effect on the surface-to-volume ratio. Regarding the elastic modulus, in the region of low porosity (approximately 0.5–0.7), the range for the effective elastic modulus of Schwarz P is the widest (approximately 2.24–32.6 GPa), but the Gyroid can achieve both high porosity and low effective elastic modulus (e.g. 0.61 GPa at the porosity of 0.90). These results and the method developed in the present study provided important basis and guidance for the design and application of the TPMS-based porous structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.