The recovery of impaired peripheral nerves is often not as expected, which makes the development of nerve conduits trendy nowadays. To enable the neural messages effectively being delivered as well as to prevent the secondary damage during the removal of nerve conduits, the conductivity and biodegradability are two essential requirements for ideal nerve conduits. In this study, electrospinning is used to produce polyvinyl alcohol (PVA)/carbon nanotubes (CNT) electrospun films, after which the morphology analysis, electrical property, water contact angle, and biological characteristics of the membranes are investigated, thereby determining the optimal nerve conduits based on the employment of electrospinning, PVA, and CNT. The test results indicate that with 0.25 wt% of PVA, the electrospun films exhibit comparatively lower resistance of 25.3 ohm, good fibrous morphology with a diameter being 1 μm. In addition, the electrospun films are cytotoxicity-free and facilitate the growth of cells. It is observed in the MMT assay that after co-cultured with cells for three days, PVA/CNT electrospinning fibrous membranes exhibit a cellular viability that is 18.5 times greater than that of the control group on Day 1. According to all property evaluations, PVA/CNT electrospinning fibrous membranes are a qualified candidate for the use of nervous conduits.
In this study, high resilience polyester fibers and low melting point polyester (LMPET) fibers are blended at varying ratios in order to form buffering composite nonwoven fabrics. Next, the employment of hot pressing enables the combination of the fabrics and elastic polymer films. The mechanical and buffering properties of the composites are evaluated in terms of the blending ratio and the thickness of the composites. As per the interface observation and the results of the peel test, the nonwoven fabrics and polymer films are firmly bonded. The tensile test results indicate that when there is more content of LMPET fibers, the reinforcement to the composites is greater. Conversely, the puncture test results indicate that the LMPET‐fiber‐free composites possess 1.4 times higher puncture resistance. Based on the results of the hammer rebound and compression recovery tests, a greater thickness provides the composites with better buffering efficacy.
Cloth diapers also known as eco-diapers, traditional sandwich-structured eco-diapers are composed of top and bottom layers that are made of cotton or polyester nonwoven fabrics. On account of the hydrophilic bottom layer, urine permeates when the water absorption reaches saturation. In this study, polypropylene is melt-blown into hydrophobic polypropylene nonwoven fabrics to be used as the top and bottom layer. Polypropylene is hydrophobic but after being fabricated into nonwoven fabrics, the porous structure enables the urine to leak to the absorbent interlayer of eco-diapers. Hence, the top layer of diaper does not contain urine, which makes smart diapers more comfortable than cloth diapers that are made of cotton or other moisture-absorbent materials. Moreover, the sensing mechanism via Bluetooth module can detect the water content of the interlayer with a view to improving the demerit of urine leakage. The interlayer is the sensing layer that has antibacterial function. Two types of antibacterial yarns are treated by zinc oxide and silver ions. The yarns are fabricated into antibacterial woven fabrics, after which the antibacterial properties of fabrics are investigated with quantitative and qualitative tests. Next, two parallel metallic wires are assembled in order to trigger short circuit when sensing moisture, thereby obtaining different electric resistance based on different moisture levels. Furthermore, the miniature senor can signify the cellular phones or buzzers when the two metallic wires generate electrical resistance due to the presence of urine. The metallic wires are silver-plated copper yarns, stainless steel fibers, and copper fibers, which possess different electric resistance for the corresponding miniature sensors. This study proposes an efficient manufacture of smart diapers that require only a combination of woven fabrics and two metallic wires to sense moisture, the design of which can be encompassed in diverse fields.
Tissue engineering has been developed with the aim of improving the regeneration and recovery of impaired tissues and organs. Biodegraded scaffolds serve the aforementioned functions and can also be decomposed by means of metabolism. They have no biological toxicity and save patients from injuries by the second surgery, which makes biodegradable scaffolds a new development trend in the tissue engineering. In this study, the textile engineering and chemical crosslinking techniques are employed to produce biodegradable polyvinyl alcohol (PVA) hollow braids, serving as the tissue engineering scaffolds. The process involves two types of products, including the twisted yarns and hollow braids. The twist number of PVA twisted yarns is changed to form different PVA twisted yarns, which are then used to braided into hollow braids via the braiding technology. Therefore, the hollow braids are basically composed three types of PVA twisted yarns. Next, the surface observation, mechanical properties, and degradation of the products are then evaluated. The test results indicate that PVA twisted yarns exhibit the optimal mechanical properties when being twisted with 3 turns/inch. Any higher twist counts result in over twist in the twisted yarns. The optimal hollow braids are composed of PVA twisted yarns with a twist counts being 3 turns/inch. Afterwards, hollow braids are crosslinking with genipin, thereby obtaining greater mechanical strength of 23.6 N and higher decomposition rate of 0.8. The specified hollow braids are suitable for the use as tissue engineering scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.