Developing high‐efficiency solution‐processable thermally activated delayed‐fluorescence (TADF) emitters, especially in longer wavelength regions, is a formidable challenge. Three red TADF emitters, namely NAI_R1, NAI_R2, and NAI_R3, are developed by phenyl encapsulation and tert‐butyl substitution on a prototypical 1,8‐naphthalimide‐acridine hybrid. This design strategy not only grants these molecules high solubility, excellent thermal stability, and good film‐forming ability, but also pulls down their charge‐transfer (CT) energy levels excited states. Furthermore, dispersing these emitters into two different host materials of mCP and mCPCN finely tailors their CT‐state energy levels. More importantly, a synergistic combination of molecular engineering and host selection can effectively manipulate the competition between the radiative and nonradiative decay rates of the CT singlet states of these emitters and the reverse intersystem crossing from their triplet to singlet states. Consequently, the optimal combination of NAI_R3 emitter and mCP host successfully results in a state‐of‐the‐art external quantum efficiency (EQE) of 22.5% for solution‐processed red TADF organic light‐emitting diodes (OLEDs) with an emission peak above 620 nm. This finding demonstrates that a synergistic strategy of molecular engineering and host selection with TADF emitters could provide a new pathway for developing efficient solution‐processable TADF systems.
Pt(100) facets are generally considered less active for the oxygen reduction reaction (ORR). Reported herein is a unique Pt-branched structure, a multicube, whose surface is mostly enclosed by {100} facets but contains high-index facets at the small junction area between the adjacent cubic components. The synthesis is accomplished by a Ni(2+) -mediated facet evolution from high-index {311} to {100} facets on the frameworks of multipods. Despite the high {100} facet coverage, the Pt multicubes exhibit impressive ORR activity in terms of half-wave potential and current density nearly to the level of the most active Pt-based catalysts, while the durability of catalysts is well retained. The facet evolution creates a set of samples with tunable ratios of high-index to low-index facets. The results reveal that the excellent ORR performance of Pt multicubes is a combined result of active sites by high-index facets and low resistance by flat surface. It is anticipated that this work will offer a new approach to facet-controlled synthesis and ORR catalysts design.
The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction (FAEOR) is of great significance to accelerate the commercial application of direct formic acid fuel cells (DFAFC). Herein, palladium phosphide (Pd x P y ) porous nanotubes (PNTs) with different phosphide content (i.e., Pd 3 P and Pd 5 P 2 ) are prepared by combining the self-template reduction method of dimethylglyoxime-Pd(II) complex nanorods and succedent phosphating treatment.During the reduction process, the self-removal of the template and the continual inside-outside Ostwald ripening phenomenon are responsible for the generation of the one-dimensional hollow and porous architecture. On the basis of the unique synthetic procedure and structural advantages, Pd 3 P PNTs with optimized phosphide content show outstanding electroactivity and stability for FAEOR. Importantly, the strong electronic effect between Pd and P promotes the direct pathway of FAEOR and inhibits the occurrence of the formic acid decomposition reaction, which effectively enhances the FAEOR electroactivity of Pd 3 P PNTs. In view of the facial synthesis, excellent electroactivity, high stability, and unordinary selectivity, Pd 3 P PNTs have the potential to be an efficient anode electrocatalyst for DFAFC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.