Dissipative particle dynamics (DPD) simulation was used to investigate the self-assembling dynamics process of poly(styrene-b-ethylene oxide) (PS-b-PEO) block copolymer and quantum dots (QDs) in an aqueous solution. The effects of molecular weight (MW) and segment construction of a PS−PEO block copolymer on the structure and size of the self-assembled micelles were discussed. The structural properties of micelles were characterized by a radial distribution function. The simulation results are qualitatively consistent with those of previous experiments and show that there are only small QD clusters. The hydrophobic PS chains form the micelle core, while the hydrophilic PEO chains form the shell. The size of the self-assembled PS−PEO/QDs micelle increases with the MW of PS-b-PEO block copolymer and the lengths of PEO and PS segments. The simulation results indicate that the assembling process includes four sequential transient stages: (1) the random distribution of all components in aqueous solution;(2) formation of small clusters with polymer chains and QDs; (3) crashing together of small spheres and the formation of larger aggregates; (4) stabilization of assembled micelles. The simulation reveals the physical insights of the QD loading mechanism of the PEG micelle at the mesoscopic scale, indicating the DPD simulation can be used as an adjunct to provide other valuable information for experiments.
Purpose – The purpose of this paper is to modify light hollow polymer microsphere (LHPM) with titanium dioxide nanoparticles (nano-TiO2) to improve its compatibility with latex and apply the obtained nano-TiO2/LHPM composite particles in external wall thermal insulation coatings. Design/methodology/approach – The nano-TiO2/LHPM composite particles were prepared via vigorous stirring. The morphology and chemical composition of the produced nano-TiO2/LHPM composite particles were characterized using scanning electron microscopy, energy dispersion spectrum, thermo-gravimetric analyzer and Fourier transform infrared. The performance of this new composite coating was evaluated by checking its stability, density, radiation reflectivity, thermal conductivity and the resulting insulation temperature difference when forming coating film. Findings – It was found that a 9:1 mass ratio of nano-TiO2/LHPM with total 10 weight per cent composite particles in the thermal insulation paint showed low density, good stability, low thermal conductivity (0.1687 W/m·K) and high insulation temperature difference (5.8°C). Research limitations/implications – The LHPM can be modified by other nanoparticles to improve its insulation performance in thermal insulation coatings. Practical implications – This work provides a simple, robust, but effective approach to produce new thermal insulation coatings with nano-TiO2/LHPM composite particles. Originality/value – This method for surface modification of LHPMs is novel and the modified hollow polymer microspheres could be applied to external wall insulation coatings.
A crosslinkable terpolymer P(MMA‐BA‐HEMA) was prepared by atom transfer radical copolymerization of 2‐hydroxyethyl methacrylate, methyl methacrylate and butyl acrylate. The structure of the terpolymer was characterized by 1H NMR and gel permeation chromatography. The effects on the polymerization of ligand, initiator, solvent, CuCl2 added in the initial stage and reaction temperature were investigated. The optimal reaction conditions were ethyl 2‐bromopropionate as initiator, CuCl/PMDETA as catalyst, cyclohexanone as solvent, catalyst/ligand = 1:1.5, [M]0:[I]0 = 200:1 and temperature 70 °C. The reaction followed first‐order kinetics with respect to monomer concentration, indicating the best control over the polymerization process, a constant concentration of the propagating radical during the polymerization, efficient control over Mn of the polymer and low polydispersity (Mw/Mn < 1.3). © 2013 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.