The phenol, α-tocopherol, can be electrochemically oxidised in a -2e(-)/-H(+) process to form a diamagnetic cation that is long-lived in dry organic solvents such as acetonitrile and dichloromethane, but in the presence of water quickly reacts to form a hemiketal. Variable scan rate cyclic voltammetry experiments in acetonitrile with carefully controlled amounts of water between 0.010 M-0.6 M were performed in order to determine the rate of reaction of the diamagnetic cation with water. The water content of the solvent was accurately determined by Karl Fischer coulometric titrations and the voltammetric data were modelled using digital simulation techniques. The oxidation peak potential of α-tocopherol measured during cyclic voltammetry experiments was found to shift to less positive potentials as increasing amounts of water (0.01-0.6 M) were added to the acetonitrile, which was interpreted based on hydrogen-bonding interactions between the phenolic hydrogen atom and water. Several other phenols were examined and they displayed similar voltammetric features to α-tocopherol, suggesting that interactions of phenols with trace amounts of water were a common occurrence in acetonitrile. The H-bonding interactions of α-tocopherol with water were also examined via NMR and UV-vis spectroscopies, with the voltammetric and spectroscopic studies extended to include other coordinating solvents (dimethyl sulfoxide and pyridine).
The electrochemical reduction mechanisms of flavin mononucleotide (FMN) in buffered aqueous solutions at pH 3-11 and unbuffered aqueous solutions at pH 2-11 were examined in detail using variable-scan-rate cyclic voltammetry (ν = 0.1-20 V s(-1)), controlled-potential bulk electrolysis, UV-vis spectroscopy, and rotating-disk-electrode voltammetry. In buffered solutions at pH 3-5, FMN undergoes a two-electron/two-proton (2e(-)/2H(+)) reduction to form FMNH2 at all scan rates. When the buffered pH is increased to 7-9, FMN undergoes a 2e(-) reduction to form FMN(2-), which initially undergoes hydrogen bonding with water molecules, followed by protonation to form FMNH(-). At a low voltammetric scan rate of 0.1 V s(-1), the protonation reaction has sufficient time to take place. However, at a higher scan rate of 20 V s(-1), the proton-transfer reaction is outrun, and upon reversal of the scan direction, less of the FMNH(-) is available for oxidation, causing its oxidation peak to decrease in magnitude. In unbuffered aqueous solutions, three major voltammetric waves were observed in different pH ranges. At low pH in unbuffered solutions, where [H(+)] ≥ [FMN], (FMN)H(-) undergoes a 2e(-)/2H(+) reduction to form (FMNH2)H(-) (wave 1), similar to the mechanism in buffered aqueous solutions at low pH. At midrange pH values (unbuffered), where pH ≤ pKa of the phosphate group and [FMN] ≥ [H(+)], (FMN)H(-) undergoes a 2e(-) reduction to form (FMN(2-))H(-) (wave 2), similar to the mechanism in buffered aqueous solutions at high pH. At high pH (unbuffered), where pH ≥ pKa = 6.2 of the phosphate group, the phosphate group loses its second proton to be fully deprotonated, forming (FMN)(2-), and this species undergoes a 2e(-) reduction to form (FMN(2-))(2-) (wave 3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.