4 Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; published online Feb 24.
Optically injected semiconductor laser under periodone oscillation is investigated as a source for photonic microwave transmission over fiber. The period-one nonlinear dynamics of an optically injected laser is studied for the purpose of minimizing the microwave power penalty induced by chromatic dispersion. Over a large range of injection strengths and frequency detunings, we first obtain the mapping of the period-one oscillation characteristics, including the microwave frequency, the microwave power, and the single sideband (SSB) characteristics of the optical spectrum. By accounting for the fiber chromatic dispersion, we calculate its effect on the optical spectrum and the associated microwave power penalty. A mapping of the minimum microwave power deliverable after the maximum penalty is obtained. The system is shown to be least susceptible to the penalty when operated under strong injection with the frequency detuned above the Hopf bifurcation line. Microwave frequency beyond six times the relaxation resonance frequency can be effectively transmitted.
A radio-over-fiber system uses light to carry a microwave subcarrier on optical fibers. The microwave is usually frequency modulated for wireless broadcasting. A conventional optical communication system usually operates at the baseband with amplitude modulation. The interface of the two systems thus needs an upconversion from the baseband to the microwave band with AM-to-FM transformation. An all-optical solution employing an optically injected semiconductor laser is investigated. The laser is operated in a dynamic state, where its intensity oscillates at a microwave frequency that varies with the injection strength. When the injection carries AM data, the microwave is frequency modulated accordingly. We demonstrate optical conversion from an OC-12 622-Mbps AM baseband signal to the corresponding FM microwave signal. The microwave is centered at 15.90 GHz. A bit-error rate of less than 10(-9) is measured.
Limit-cycle oscillators are used to model a broad range of periodic nonlinear phenomena. Using the optically injected semiconductor laser as a paradigmatic example, we demonstrate that at specific operating points, the period-one oscillation frequency is simultaneously insensitive to multiple perturbation sources. In our system these include the temperature fluctuations experienced by the master and slave lasers as well as fluctuations in the bias current applied to the slave laser. Tuning of the oscillation frequency then depends only on the injected optical field amplitude. Experimental measurements are in detailed quantitative agreement with numerical modeling. These special operating points should prove valuable for developing ultrastable nonlinear oscillators, such as a narrow-linewidth, frequency-tunable photonic microwave oscillator.
Supercontinuum generation in a highly nonlinear fiber pumped by noise-like pulses from an erbium-doped fiber ring laser is investigated. To generate ultrabroad spectra, a fiber amplifier is used to boost the power launched into the highly nonlinear fiber. After amplification, not only the average power of the noise-like pulses is enhanced but the spectrum of the pulses is also broadened due to nonlinear effects in the fiber amplifier. This leads to a reduction of the peak duration in their autocorrelation trace, suggesting a similar extent of pulse compression; by contrast, the pedestal duration increases only slightly, suggesting that the noise-like characteristic is maintained. By controlling the pump power of the fiber amplifier, the compression ratio of the noise-like pulse duration can be adjusted. Due to the pulse compression, supercontinuum generation with a broader spectrum is therefore feasible at a given average power level of the noise-like pulses launched into the highly nonlinear fiber. As a result, supercontinuum generation with an optical spectrum spanning from 1208 to 2111 nm is achieved using a 1-m nonlinear fiber pumped by amplified noise-like pulses of 15.5 MHz repetition rate at an average power of 202 mW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.