Background: As reported by the World Health Organization, a novel coronavirus (2019-nCoV) was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January, 2020. The virus was named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by International Committee on Taxonomy of Viruses on 11 February, 2020. This study aimed to develop a mathematical model for calculating the transmissibility of the virus. Methods: In this study, we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source (probably be bats) to the human infection. Since the Bats-Hosts-Reservoir network was hard to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market (reservoir) to people, we simplified the model as Reservoir-People (RP) transmission network model. The next generation matrix approach was adopted to calculate the basic reproduction number (R 0 ) from the RP model to assess the transmissibility of the SARS-CoV-2. Results: The value of R 0 was estimated of 2.30 from reservoir to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58. Conclusions: Our model showed that the transmissibility of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle East countries, similar to severe acute respiratory syndrome, but lower than MERS in the Republic of Korea.
bioRxiv preprint 2 this study, we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source (probable be bats) to the human infection. Since the Bats-Hosts-Reservoir network was hard to explore clearly and public concerns were focusing on the transmission from a seafood market (reservoir) to people, we simplified the model as Reservoir-People transmission network model. The basic reproduction number (R 0 ) was calculated from the RP model to assess the transmissibility of the 2019-nCoV.
Here we report a case study of a SARS-CoV-2 outbreak event during bus trips of an index patient in Hunan Province, China. This retrospective investigation suggests potential airborne transmission of SARS-CoV-2 and the possibility of superspreading events in certain close contact and closed space settings, which should be taken in to account when control strategies are planned.
Background: The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also called 2019-nCoV) causes different morbidity risks to individuals in different age groups. This study attempts to quantify the age-specific transmissibility using a mathematical model. Methods: An epidemiological model with five compartments (susceptible-exposed-symptomatic-asymptomaticrecovered/removed [SEIAR]) was developed based on observed transmission features. Coronavirus disease 2019 (COVID-19) cases were divided into four age groups: group 1, those ≤ 14 years old; group 2, those 15 to 44 years old; group 3, those 45 to 64 years old; and group 4, those ≥ 65 years old. The model was initially based on cases (including imported cases and secondary cases) collected in Hunan Province from January 5 to February 19, 2020. Another dataset, from Jilin Province, was used to test the model.
Background The reported incidence of dengue fever increased dramatically in recent years in China. This study aimed to investigate and to assess the effectiveness of intervention implemented in a dengue outbreak in Ningbo City, Zhejiang Province, China. Methods Data of a dengue outbreak were collected in Ningbo City in China by a field epidemiological survey according to a strict protocol and case definition. Serum specimens of all cases were collected for diagnosis and the virological characteristics were detected by using polymerase chain reaction (PCR) and gene sequencing. Vector surveillance was implemented during the outbreak to collect the larva and adult mosquito densities to calculate the Breteau Index (BI) and human biting rate (HBR), respectively. Data of monthly BI and light-trap density in 2018 were built to calculate the seasonality of the vector. A transmission mathematical model was developed to dynamic the incidence of the disease. The parameters of the model were estimated by the data of the outbreak and vector surveillance data in 2018. The effectiveness of the interventions implemented during the outbreak was assessed by the data and the modelling. Results From 11 August to 8 September, 2018, a dengue outbreak was reported with 27 confirmed cases in a population of 5536-people community (community A) of Ningbo City. Whole E gene sequences were obtained from 24 cases and were confirmed as dengue virus type 1 (DENV-1). The transmission source of the outbreak was origin from community B where a dengue case having the same E gene sequence was onset on 30 July. Aedes albopictus was the only vector species in the area. The value of BI and HBR was 57.5 and 12 per person per hour respectively on 18 August, 2018 and decreased dramatically after interventions. The transmission model fitted well ( χ 2 = 6.324, P = 0.388) with the reported cases data. With no intervention, the total simulated number of the cases would be 1728 with a total attack rate (TAR) of 31.21% (95%CI: 29.99%– 32.43%). Case isolation and larva control (LC) have almost the same TAR and duration of outbreak (DO) as no intervention. Different levels of reducing HBR (rHBR) had different effectiveness with TARs ranging from 1.05% to 31.21% and DOs ranging from 27 days to 102 days. Adult vector control (AVC) had a very low TAR and DO. “LC+AVC” had a similar TAR and DO as that of AVC. “rHBR 100% +LC”, “rHBR 100% +AVC”, “rHBR 100% +LC+AVC” and “rHBR 100% +LC+AVC+Iso” had the same effectiveness. Conclusions Without intervention, DENV-1 could be transmitted rapidly within a short period of time and leads to high attack rate in community in China. AVC or rHBR should be recommended as primary interventions to control rapid transmission of the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.