of background data The vascular buds in the vertebral endplate (VEP) are the structural foundation of nutrient exchange in the intervertebral disc (IVD). VEGF is closely related to angiogenesis in the endplate and intervertebral disc degeneration (IDD). Objective To investigate the effects of static load on vascular buds and VEGF expression in the VEP and to further clarify the relation between IDD and VEGF. Methods IVD motion segments were harvested from rabbit lumbar spines and cultured under no-loading conditions (controls) or in custom-made apparatuses under a constant compressive load (0.5 MPa) for up to 14 days. Tissue integrity and the number of vascular buds were determined, and the concentrations and expression of Aggrecan, COL2a1, and VEGFA in the VEPs were assessed after 3, 7, and 14 days of culturing and then compared with those of fresh tissues. Results Under the constant compression, the morphological integrity of the VEPs was gradually disrupted, and immunohistochemistry results showed a significant decrease in the levels of Agg and COL2a1. During the static load, the number of vascular buds in the VEPs was gradually reduced from the early stage of culture, and ELISA showed that the constant compressive load caused a significant decrease in the VEGFA and VEGFR2 protein concentrations, which were consistent with the immunohistochemistry results. Western blot and RT-PCR
StudyDesign. An ex vivo study of the rabbit's vertebral endplate.Objective. The aim of this study was to assess the effect of axial compression and distraction on vascular buds and vascular endothelial growth factor (VEGFA) expression of the vertebral endplate (VEP). Summary of Background Data. The abnormal load can lead to intervertebral disc degeneration (IDD), whereas axial distraction can delay this process. The effects of different mechanical loads on the intervertebral disc (IVD) have been hypothesized to be related to changes in the vascular buds of the VEP; moreover, the process that might involve the vascular endothelial growth factor (VEGF) within the VEP. Methods. Rabbit spinal segments (n ¼ 40) were harvested and randomly classified into four groups: Control group, no stress was applied; Group A, a constant compressive load applied; Group B, compression load removed for a fixed time daily on a continuous basis, and substituted with a distraction load for 30 minutes; and Group C, compression removed for 30 minutes for a fixed period daily on a continuous basis. Tissue specimens were collected before the culture (day 0) and on day 14 postculture of each group for analysis of IVDs' morphology, and protein and mRNA expression of Aggrecan, COL2al, VEGFA, and vascular endothelial growth factor receptor 2 of the VEPs. Results. Application of axial distraction and dynamic load compression significantly delayed time-and constant compression-mediated VEP changes and IDD. Moreover, the degree of degeneration was associated with loss of vascular buds, as well as the downregulation of VEGFA and its receptor. Conclusion. The regulation of vascular buds and VEGF expression in the VEP represents one of the mechanisms of axial distraction and dynamic loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.