Extensive recent progress has been made on the design and applications of organic photothermal agents for biomedical applications because of their excellent biocompatibility comparing with inorganic materials. One major hurdle for the further development and applications of organic photothermal agents is the rarity of high‐performance materials in the second near‐infrared (NIR‐II) window, which allows deep tissue penetration and causes minimized side effects. Up till now, there have been few reported NIR‐II‐active photothermal agents and their photothermal conversion efficiencies are relatively low. Herein, optical absorption of π‐conjugated small molecules from the first NIR window to the NIR‐II window is precisely regulated by molecular surgery of substituting an individual atom. With this technique, the first demonstration of a conjugated oligomer (IR‐SS) with an absorption peak beyond 1000 nm is presented, and its nanoparticle achieves a record‐high photothermal conversion efficiency of 77% under 1064 nm excitation. The nanoparticles show a good photoacoustic response, photothermal therapeutic efficacy, and biocompatibility in vitro and in vivo. This work develops a strategy to boost the light‐harvesting efficiency in the NIR‐II window for cancer theranostics, offering an important step forward in advancing the design and application of NIR‐II photothermal agents.
We
developed a biodegradable photothermal therapeutic (PTT) agent,
π-conjugated oligomer nanoparticles (F8-PEG NPs), for highly
efficient cancer theranostics. By exploiting an oligomer with excellent
near-infrared (NIR) absorption, the nanoparticles show a high photothermal
conversion efficiency (PCE) up to 82%, surpassing those of reported
inorganic and organic PTT agents. In addition, the oligomer nanoparticles
show excellent photostability and good biodegradability. The F8-PEG
NPs are also demonstrated to have excellent biosafety and PTT efficacy
both in vitro and in vivo. This
contribution not only proposes a promising oligomer-based PTT agent
but also provides insight into developing highly efficient nanomaterials
for cancer theranostics.
To develop high-performance thermally activated delayed fl uorescence (TADF) exciplex emitters, a novel strategy of introducing a single-molecule TADF emitter as one of the constituting materials has been presented. Such a new type of exciplex TADF emitter will have two reverse intersystem crossing (RISC) routes on both the pristine TADF molecules and the exciplex emitters, benefi ting the utilization of triplet excitons. Based on a newly designed and synthesized single-molecule TADF emitter MAC, a highly effi cient exciplex emitter MAC:PO-T2T has been obtained. The device based on MAC:PO-T2T with a weight ratio of 7:3 exhibits a low turn-on voltage of 2.4 V, high maximum effi ciency of 52.1 cd A −1 (current effi ciency), 45.5 lm W −1 (power effi ciency), and 17.8% (external quantum effi ciency, EQE), as well as a high EQE of 12.3% at a luminance of 1000 cd m −2 . The device shows the best performance among reported organic light-emitting devices based on exciplex emitters. Such high-effi ciency and low-effi ciency roll-off should be ascribed to the additional reverse intersystem crossing process on the MAC molecules, showing the advantages of the strategy described in this study.
A novel thermally activated delayed fluorescence (TADF) emitter 12,15‐di(10H‐phenoxazin‐10‐yl)dibenzo[a,c]dipyrido[3,2‐h:2′,3′‐j]phenazine (DPXZ‐BPPZ) is developed for a highly efficient red organic light‐emitting diode (OLED). With rigid and planar constituent groups and evident steric hindrance between electron‐donor (D) and electron‐acceptor (A) segments, DPXZ‐BPPZ realizes extremely high rigidity to suppress the internal conversion process. Meanwhile, the highly twisted structure between D and A segments will also lead to an extremely small singlet–triplet energy split to DPXZ‐BPPZ. Therefore, DPXZ‐BPPZ successfully realizes an efficient fluorescent radiation transition and reverse intersystem crossing process, and possesses an extremely high photoluminescence quantum efficiency of 97.1 ± 1.1% under oxygen‐free conditions. The OLED based on DPXZ‐BPPZ shows red emission with a peak at 612 nm and a Commission Internationale de L'Eclairage (CIE) coordinate of (0.60, 0.40), and it achieves high maximum forward‐viewing efficiencies of 20.1 ± 0.2% (external quantum efficiency), 30.2 ± 0.6 cd A−1 (current efficiency), and 30.9 ± 1.3 lm W−1 (power efficiency). The prepared OLED has the best performance among the reported red TADF OLEDs. These results prove that DPXZ‐BPPZ is an ideal candidate for red TADF emitters, and the designing approach is valuable for highly efficient red TADF emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.