The Shanghai Tower, currently being constructed in Shanghai, China, is a supertall building with a height of 632 m. The Shanghai Tower will be the tallest skyscraper in China after its completion. This structure consists of a core wall inner tube, an outer mega-frame, and a total of six levels of outriggers that connect the tube and the frame.The structure needs comprehensive full-scale investigation to understand its structural performance when subjected to dead loads, strong winds, earthquakes, and temperatures, given its supertall height and complex structural configuration. A sophisticated structural performance monitoring system that consists of more than 400 sensors is designed for both in-construction and in-service real-time monitoring of the skyscraper. This is the Pre-Published Version.This paper reports the structural system and provides details on the performance of the monitoring system. The key features of the monitoring system are the following: (1) simultaneous installation of sensors and data acquisition systems with structural construction to record initial values; (2) measurement of structural settlement and displacement at different construction stages; (3) direct measurement of wind loads on structure facades through 27 wind pressure sensors; and (4) measurement of structural inclination and derivation of structural sway at different heights using 40 inclinometers.Preliminary monitoring data, which include deformation and strain/stress up to the present construction stage, are also presented and discussed.
Structural temperature is an important loading that must be considered during the design, construction, and safety assessment. The thermal action of supertall structures has rarely been investigated because of insufficient real measurement data, as compared with that on bridges. In this study, the thermal action of the 600-m-tall Canton Tower is investigated on the basis of the comprehensive long-term SHM system installed on the structure and the numerical simulation. First, the temperature model of the entire structure is derived by using the field monitoring and numerical heat transfer analysis data. In particular, (i) the temperature difference between different facades of the inner tube, (ii) the temperature difference profile of the outer tube, and (iii) the distribution of the temperature difference between the inner and outer tubes along the structural height are presented in detail. Results show that the nonuniform distribution of the temperature field between the different components of the structure is significant and should be carefully considered in the analysis of such a complex supertall structure. Second, the temperature effects on structural displacement, stress, and internal forces consisting of (i) the tower top horizontal displacement during different seasons, (ii) the stresses of different levels/components, and (iii) the bending moments/shear forces along the structural height are investigated. The simulated results obtained by using the global finite element model of the tower are verified through a comparison with the measurements. This study provides first-hand data for the design of supertall structures in the tropical region of China.
To investigate the spatial performance of concrete filled steel tubular arch with corrugated steel webs, a static loading test has been conducted on an arch with a clear span of 6m subjected to in-plane and out-of-plane loading simultaneously. The structural behaviors such as load-displacement relation, ductility, distribution of strains in tubes and corrugated webs, were explored. Based on the results, it is demonstrated that the lateral deformation is the critical factor for the ultimate load-carrying capacity of the arch. In the whole process of test for the tubular arch, material non-linearity is dominant and geometrical non-linearity is subordinate. It could be concluded that the CFST-CSW arch shows good structural behavior and may be applicable in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.