A dual-band self-powered photodetector (SPPD) with high sensitivity is realized by a facile combination of InSe Schottky diode and Au plasmonic nanoparticle (NP) arrays. Comparing with pristine InSe devices, InSe/Au photodetectors possess an additional capability of photodetection in visible to near-infrared (NIR) region. This intriguing phenomenon is attributed to the wavelength selective enhancement of pristine responsivities by hybridized quadrupole plasmons resonance of Au NPs. It is worth pointing out that the maximum of enhancement ratio in responsivity reaches up to ∼1200% at a wavelength of 685 nm. In addition, owing to a large Schottky barrier difference formed between active layer and two asymmetric electrodes, the responsivities of dual-band InSe/Au photodetector could reach up to 369 and 244 mA/W at the wavelength of 365 and 685 nm under zero bias voltage, respectively. This work would provide an additional opportunity for developing multifunctional photodetectors with high performance based on two-dimensional materials, upgrading their capacity of photodetection in a complex environment.
Piezoelectric two-dimensional (2D) van der Waals (vdWs) materials are highly desirable for applications in miniaturized and flexible/wearable devices. However, the reverse-polarization between adjacent layers in current 2D layered materials results in decreasing their in-plane piezoelectric coefficients with layer number, which limits their practical applications. Here, we report a class of 2D layered materials with an identical orientation of in-plane polarization. Their piezoelectric coefficients (e22) increase with layer number, thereby allowing for the fabrication of flexible piezotronic devices with large piezoelectric responsivity and excellent mechanical durability. The piezoelectric outputs can reach up to 0.363 V for a 7-layer α-In2Se3 device, with a current responsivity of 598.1 pA for 1% strain, which is one order of magnitude higher than the values of the reported 2D piezoelectrics. The selfpowered piezoelectric sensors made of these newly developed 2D layered materials have been successfully used for real-time health monitoring, proving their suitability for the fabrication of flexible piezotronic devices due to their large piezoelectric responses and excellent mechanical durability.
The piezo-phototronic effect has been promising as an effective means to improve the performance of two-dimensional (2D) semiconductor based optoelectronic devices. However, the current reported monolayer 2D semiconductors are not regarded as suitable for actual flexible piezotronic photodetectors due to their insufficient optical absorption and mechanical durability, although they possess strong piezoelectricity. In this work, we demonstrate that, unlike 2H-phase transition-metal dichalcogenides, γ-phase InSe with a hexagonal unit cell possesses broken inversion symmetry in all the layer numbers and has a strong second-harmonic generation effect. Moreover, driven by the piezo-phototronic effect, a flexible self-powered photodetector based on multilayer γ-InSe, which can work without any energy supply, is proposed. The device exhibited ultrahigh photon responsivity of 824 mA/W under light illuminations of 400 nm (0.368 mW/cm 2 ). Moreover, the responsivity and response speed of this photodetector were enhanced further by as much as 696% and 1010%, respectively, when a 0.62% uniaxial tensile strain was applied. Our devices exhibit high reliability and stability during a 6 month test time. These significant findings offer a promising pathway to construct high-performance flexible piezo-phototronic photodetectors based on multilayer 2D semiconductors.
Self-powered photodetectors
with great potential for implanted
medical diagnosis and smart communications have been severely hindered
by the difficulty of simultaneously achieving high sensitivity and
fast response speed. Here, we report an ultrafast and highly sensitive
self-powered photodetector based on two-dimensional (2D) InSe, which
is achieved by applying a device architecture design and generating
ideal Schottky or ohmic contacts on 2D layered semiconductors, which
are difficult to realize in the conventional semiconductors owing
to their surface Fermi-level pinning. The as-fabricated InSe photodiode
features a maximal lateral self-limited depletion region and a vertical
fully depleted channel. It exhibits a high detectivity of 1.26 ×
1013 Jones and an ultrafast response speed of ∼200
ns, which breaks the response speed limit of reported self-powered
photodetectors based on 2D semiconductors. The high sensitivity is
achieved by an ultralow dark current noise generated from the robust
van der Waals (vdW) Schottky junction and a high photoresponsivity
due to the formation of a maximal lateral self-limited depletion region.
The ultrafast response time is dominated by the fast carrier drift
driven by a strong built-in electric field in the vertical fully depleted
channel. This device architecture can help us to design high-performance
photodetectors utilizing vdW layered semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.