In this paper we propose an L 1/2 regularizer which has a nonconvex penalty. The L 1/2 regularizer is shown to have many promising properties such as unbiasedness, sparsity and oracle properties. A reweighed iterative algorithm is proposed so that the solution of the L 1/2 regularizer can be solved through transforming it into the solution of a series of L 1 regularizers. The solution of the L 1/2 regularizer is more sparse than that of the L 1 regularizer, while solving the L 1/2 regularizer is much simpler than solving the L 0 regularizer. The experiments show that the L 1/2 regularizer is very useful and efficient, and can be taken as a representative of the Lp(0 < p < 1) regularizer.
A key ingredient in social contagion dynamics is reinforcement, as adopting a certain social behavior requires verification of its credibility and legitimacy. Memory of nonredundant information plays an important role in reinforcement, which so far has eluded theoretical analysis. We first propose a general social contagion model with reinforcement derived from nonredundant information memory. Then, we develop a unified edge-based compartmental theory to analyze this model, and a remarkable agreement with numerics is obtained on some specific models. We use a spreading threshold model as a specific example to understand the memory effect, in which each individual adopts a social behavior only when the cumulative pieces of information that the individual received from his or her neighbors exceeds an adoption threshold. Through analysis and numerical simulations, we find that the memory characteristic markedly affects the dynamics as quantified by the final adoption size. Strikingly, we uncover a transition phenomenon in which the dependence of the final adoption size on some key parameters, such as the transmission probability, can change from being discontinuous to being continuous. The transition can be triggered by proper parameters and structural perturbations to the system, such as decreasing individuals' adoption threshold, increasing initial seed size, or enhancing the network heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.