For the problem of range-spread target detection, many adaptive detectors commonly estimate the covariance matrix of the disturbance by utilizing the training data without target information. However, in the limited-training case, the conventional detectors suffer significant performance degradation. This paper devises and assesses a model-based Wald detector by modeling the disturbance as an autoregressive (AR) process with unknown parameters, which is able to overcome the detection degradation caused by insufficient training data. Meanwhile, the Wald test reduces the computational complexity because the unknown parameters are only estimated by maximum likelihood criterion under hypothesis that the target exists. Remarkably the asymptotic expression for the probability of detection and false alarm shows the detector is asymptotically constant false alarm rate (CFAR) with respect to the disturbance covariance matrix. The performance evaluation, conducted by resorting to simulation data, has confirmed the effectiveness of the current proposal in comparison with the previously proposed detectors. INDEX TERMS Adaptive detector, autoregressive process, range-spread target, Wald test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.