In this Communication, a self‐organization method of [6,6]‐phenyl‐C61‐butyric acid 2‐((2‐(dimethylamino)‐ethyl) (methyl)amino)ethyl ester (PCBDAN) interlayer in between 6,6‐phenyl C61‐butyric acid methyl ester (PCBM) and indium tin oxide (ITO) has been proposed to improve the performance of N–I–P perovskite solar cells (PSCs). The introduction of self‐organized PCBDAN interlayer can effectively reduce the work function of ITO and therefore eliminate the interface barrier between electron transport layer and electrode. It is beneficial for enhancing the charge extraction and decreasing the recombination loss at the interface. By employing this strategy, a highest power conversion efficiency of 18.1% has been obtained with almost free hysteresis. Furthermore, the N–I–P PSCs have excellent stability under UV‐light soaking, which can maintain 85% of its original highest value after 240 h accelerated UV aging. This self‐organization method for the formation of interlayer can not only simplify the fabrication process of low‐cost PSCs, but also be compatible with the roll‐to‐roll device processing on flexible substrates.
Organic-inorganic halide perovskite solar cells have attracted great attention in recent years. But there are still a lot of unresolved issues related to the perovskite solar cells such as the phenomenon of anomalous hysteresis characteristics and long-term stability of the devices. Here, we developed a simple three-layered efficient perovskite device by replacing the commonly employed PCBM electrical transport layer with an ultrathin fulleropyrrolidinium iodide (C-bis) in an inverted p-i-n architecture. The devices with an ultrathin C-bis electronic transport layer yield an average power conversion efficiency of 13.5% and a maximum efficiency of 15.15%. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements show that the high performance is attributed to the efficient blocking of holes and high extraction efficiency of electrons by C-bis, due to a favorable energy level alignment between the CHNHPbI and the Ag electrodes. The hysteresis effect and stability of our perovskite solar cells with C-bis become better under indoor humidity conditions.
Solution-processed polycrystalline perovskite films contribute critically to the high photovoltaic performance of perovskite-based solar cells (PSCs). The inevitable electronic trap states at grain boundaries and intrinsic defects such as metallic lead (Pb) and halide vacancies in perovskite films cause serious carrier recombination loss. Furthermore, the film can easily decompose into PbI in a moist atmosphere. Here, we introduce a simple strategy, through a small increase in methylammonium iodide (CHNHI, MAI), molar proportion (5%), for perovskite fabrication in ambient air with ∼50% relative humidity. Analysis of the morphology and crystallography demonstrates that excess MAI significantly promotes grain growth without decomposition. X-ray photoemission spectroscopy shows that no metallic Pb exists in the perovskite film and the I/Pb ratio is improved. A time-resolved photoluminescence measurement indicates efficient suppression of non-radiative recombination in the perovskite layer. As a result, the device yields improved power conversion efficiency from 14.06% to 18.26% with reduced hysteresis and higher stability under AM1.5G illumination (100 mW cm). This work strongly provides a feasible and low-cost way to develop highly efficient PSCs in ambient air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.