Ferrites are the most widely used microwave absorbing materials to deal with the threat of electromagnetic (EM) pollution. However, the lack of sufficient dielectric loss capacity is the main challenge that limits their applications. To cope with this challenge, three high-entropy (HE) spinel-type ferrite ceramics including (Mg0.2Mn0.2Fe0.2Co0.2Ni0.2)Fe2O4, (Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)Fe2O4, and (Mg0.2Fe0.2Co0.2Ni0.2Zn0.2)Fe2O4 were designed and successfully prepared through solid state synthesis. The results show that all three HE MFe2O4 samples exhibit synergetic dielectric loss and magnetic loss. The good magnetic loss ability is due to the presence of magnetic components; while the enhanced dielectric properties are attributed to nano-domain, hopping mechanism of resonance effect and HE effect. Among three HE spinels, (Mg0.2Mn0.2Fe0.2Co0.2Ni0.2)Fe2O4 shows the best EM wave absorption performance, e.g., its minimum reflection loss (RLmin) reaches −35.10 dB at 6.78 GHz with a thickness of 3.5 mm, and the optimized effective absorption bandwidth (EAB) is 7.48 GHz from 8.48 to 15.96 GHz at the thickness of 2.4 mm. Due to the easy preparation and strong EM dissipation ability, HE MFe2O4 are promising as a new type of EM absorption materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.