We report here a new type of plasmid that carries the mcr-1 gene, the pMCR-1-P3 plasmid, harbored in an Escherichia coli strain isolated from a pig farm in China. pMCR-1-P3 belongs to the IncY incompatibility group and is a phage-like plasmid that contains a large portion of phage-related sequences. The backbone of this plasmid is different from that of other mcr-1-carrying plasmids reported previously.
BackgroundMycoplasma synoviae is an avian pathogen that can lead to respiratory tract infections and arthritis in chickens and turkeys, resulting in serious economic losses to the poultry industry. Enolase reportedly plays important roles in several bacterial pathogens, but its role in M. synoviae has not been established. Therefore, in this study, the enolase encoding gene (eno) of M. synoviae was amplified from strain WVU1853 and expressed in E. coli BL21 cells. Then the enzymatic activity, immunogenicity and binding activity with chicken plasminogen (Plg) and human fibronectin (Fn) was evaluated.ResultsWe demonstrated that the recombinant M. synoviae enolase protein (rMsEno) can catalyze the conversion of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP), the Km and Vmax values of rMsEno were 1.1 × 10−3 M and 0.739 μmol/L/min, respectively. Western blot and immuno-electron microscopy analyses confirmed that enolase was distributed on the surface and within the cytoplasm of M. synoviae cells. The binding assays demonstrated that rMsEno was able to bind to chicken Plg and human Fn proteins. A complement-dependent mycoplasmacidal assay demonstrated that rabbit anti–rMsEno serum had distinct mycoplasmacidal efficacy in the presence of complement, which also confirmed that enolase was distributed on the surface of M. synoviae. An inhibition assay showed that the adherence of M. synoviae to DF-1 cells pre-treated with Plg could be effectively inhibited by treatment with rabbit anti-rMsEno serum.ConclusionThese results reveal that M. synoviae enolase has good catalytic activity for conversion of 2-PGA to PEP, and binding activity with chicken Plg and human Fn. Rabbit anti–rMsEno serum displayed an obvious complement-dependent mycoplasmacidal effect and adherent inhibition effect. These results suggested that the M. synoviae enolase plays an important role in M. synoviae metabolism, and could potentially impact M. synoviae infection and immunity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-014-0223-6) contains supplementary material, which is available to authorized users.
Clostridium perfringens is associated with a variety of diseases in both humans and animals. Recent advances in genomic sequencing make it timely to re-visit this important pathogen. Although the genome sequence of C. perfringens was first determined in 2002, large-scale comparative genomics with isolates of different origins is still lacking. In this study, we used whole-genome sequencing of 45 C . perfringens isolates with isolation time spanning an 80‐year period and performed comparative analysis of 173 genomes from worldwide strains. We also conducted phylogenetic lineage analysis and introduced an openness index (OI) to evaluate the openness of bacterial genomes. We classified all these genomes into five lineages and hypothesized that the origin of C. perfringens dates back to ~80 000 years ago. We showed that the pangenome of the 173 C . perfringens strains contained a total of 26 954 genes, while the core genome comprised 1020 genes, accounting for about a third of the genome of each isolate. We demonstrated that C. perfringens had the highest OI compared with 51 other bacterial species. Intact prophage sequences were found in nearly 70.0 % of C. perfringens genomes, while CRISPR sequences were found only in ~40.0 %. Plasmids were prevalent in C. perfringens isolates, and half of the virulence genes and antibiotic resistance genes (ARGs) identified in all the isolates could be found in plasmids. ARG-sharing network analysis showed that C. perfringens shared its 11 ARGs with 55 different bacterial species, and a high frequency of ARG transfer may have occurred between C. perfringens and species in the genera Streptococcus and Staphylococcus . Correlation analysis showed that the ARG number in C. perfringens strains increased with time, while the virulence gene number was relative stable. Our results, taken together with previous studies, revealed the high genome openness and genetic diversity of C. perfringens and provide a comprehensive view of the phylogeny, genomic features, virulence gene and ARG profiles of worldwide strains.
Marek's disease virus (MDV) contains a bi-directional promoters located between pp38 gene and 1.8-kb mRNA in the long inverted repeat region of the viral genome. The involvement of pp38 gene in up-regulating the activity of these promoters was analyzed by transient expression of chloramphenicol acetyltransferase (CAT) reporter gene. Two CAT reporter plasmids, pP(pp38)-CAT and pP(1.8-kb)-CAT, were constructed to express CAT under the control of the bi-directional promoter in both orientations. These plasmids were transfected into chicken embryonic fibroblast (CEF), infected with rMd5 and pp38 deleted rMd5 (rMd5/Deltapp38), respectively. No CAT activity was detected in uninfected CEF as expected. CAT activities in rMd5/Deltapp38 virus infected CEF (rMd5/Deltapp38-CEF) were 3.5-fold lower using pP(pp38)-CAT and 12-fold lower using pP(1.8-kb)-CAT than those of the parental rMd5 infected CEF (rMd5-CEF). The significantly lower promoter activity in the pp38 deletion virus suggests that pp38 can regulate the activity of the bi-directional promoters, especially in the direction of 1.8-kb mRNA family. Co-transfection of pp38-expressing plasmid (pcDNA-pp38) into rMd5/Deltapp38-CEF significantly increased the activity of the bi-directional promoters using either pP(pp38)-CAT or pP(1.8-kb)-CAT. DNA mobility shift assay showed a binding of the 73-bp sequence of the bi-directional promoter with rMd5-CEF but not with rMd5/Deltapp38-CEF or uninfected CEF lysates. However, rMd5/Deltapp38-CEF lysates could bind the same 73-bp promoter sequence when co-transfected with pp38-expressing plasmid (pcDNA-pp38). All these data taken together suggest pp38 plays an important role in regulating the transcriptional activity of the bi-directional promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.