Salinity stress represents one of the most harmful abiotic stresses for agricultural productivity. Tibetan hulless barley is an important economic crop widely grown in highly stressful conditions in the Qinghai-Tibet Plateau and is often challenged by salinity stress. To investigate the temporal metabolic responses to salinity stress in hulless barley, we performed a widely targeted metabolomic analysis of 72 leaf samples from two contrasting cultivars. We identified 642 compounds 57 % of which were affected by salt stress in the two cultivars, principally amino acids and derivatives, organic acids, nucleotides, and derivatives and flavonoids. A total of 13 stress-related metabolites including piperidine, L-tryptophan, L-glutamic acid, L-saccharopine, L-phenylalanine, 6-methylcoumarin, cinnamic acid, inosine 5′-monophosphate, aminomalonic acid, 6-aminocaproic acid, putrescine, tyramine and abscisic acid (ABA) represent the core metabolome responsive to salinity stress in hulless barley regardless of the tolerance level. In particular, we found that the ABA signalling pathway is essential to salt stress response in hulless barley. The high tolerance of the cultivar 0119 is due to a metabolic reprogramming at key stress times. During the early salt stress stages (0–24 h), 0119 tended to save energy through reduced glycolysis, nucleotide metabolism and amino acid synthesis, while increased antioxidant compounds such as flavonoids. Under prolonged stress (48–72 h), 0119 significantly enhanced energy production and amino acid synthesis. In addition, some important compatible solutes were strongly accumulated. By comparing the two cultivars, nine salt-tolerance biomarkers, mostly unreported salt-tolerance compounds in plants, were uncovered. Our study indicated that the salt tolerant hulless barley cultivar invokes a tolerance strategy which is conserved in other plant species. Overall, we provide for the first time some extensive metabolic data and some important salt-tolerance biomarkers which may assist in efforts to improve hulless barley tolerance to salinity stress.
Hulless barley (Hordeum vulgare L. var. nudum) is a barley variety that has loose husk cover of the caryopses. Because of the ease in processing and edibility, hulless barley has been locally cultivated and used as human food. For example, in Tibetan Plateau, hulless barley is the staple food for human and essential livestock feed. Although the draft genome of hulless barley has been sequenced, the assembly remains fragmented. Here, we reported an improved high-quality assembly and annotation of the Tibetan hulless barley genome using more than 67X PacBio long-reads. The N50 contig length of the new assembly is at least more than 19 times larger than other available barley assemblies. The new genome assembly also showed high gene completeness and high collinearity of genome synteny with the previously reported barley genome. The new genome assembly and annotation will not only remove major hurdles in genetic analysis and breeding of hulless barley, but will also serve as a key resource for studying barley genomics and genetics.
Differences in drought stress tolerance within diverse grass genotypes have been attributed to epigenetic modifications. DNA methylation is an important epigenetic alteration regulating responses to drought stress. However, its effects on drought tolerance are poorly understood in Tibetan hulless barley. Here, bisulfite sequencing was conducted to profile the DNA methylation patterns of drought-tolerant variety (XL) and drought-sensitive (DQ) under drought and control conditions. A total of 5843 million reads were generated. We found the significant genome-wide changes in CHH methylation rates between XL and DQ, while CG or CHG methylation rates did not. Besides that, the two contrasting varieties do reveal distinct responses to drought stress in antioxidant activities and differentially methylated regions (DMRs). Genes in drought-tolerant varieties XL are rapidly and significantly methylated when exposed to drought stimulus. These DMRs-related genes in XL are significantly enriched in defense response and response to stimuli via gene-ontology enrichment analysis. Then, we focused on 1003 transcription factors and identified 15 specific DMRs-related transcription factors exhibiting specific methylation changes under drought stimuli. Finally, we identified three DMRs-related TFs (HvRR12, HvRR2, and HvCSP41B), where Arabidopsis homologs involve in responses to drought conditions. Altogether, abiotic stresses could be rapidly respond and mediated by methylation of transcription factors in hulless barely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.