Biocompatible, biodegradable, and biomimetic scaffolds in combination with stem cells are of great importance for tissue engineering, especially the repairing and regeneration of defected organs. As a case in point, esophageal diseases have become serious clinical problems because of the poor self-repairing ability of the organ. It is crucial to prepare artificial replacements with biological function for serious lesions of the esophagus. However, the pH value, mechanical strength, thickness, and other physical conditions are very different in different organs or different parts of the same organ, which pose high difficulty for successful tissue engineering. In this work, bone marrow mesenchymal stem cells (bMSCs) were isolated from rabbits and transfected with green fluorescent protein (GFP) to follow their capabilities of growth, stemness, and differentiation in ex vivo culture. These bMSCs were seeded on biocompatible, biodegradable, and biomimetic scaffolds to detect the tissue regenerative capability of the esophagus with multilayer hierarchical structure. According to the esophageal bilayer muscle architecture, we designed discontinuous and continuous microchannel patterned scaffolds with medical level polyurethane (PU) as the matrix to guide the inner-circular and outer-longitudinal muscle growth. The gap on the discontinuous walls not only helped cells to communicate with each other but also assisted cells to infiltrate through the gap and grew into the inner circular muscle. The graft of silk fibroin on the scaffold surface using the aminolysis and glutaraldehyde cross-linking method enhanced the substrate’s hydrophilicity and biocompatibility. Mucosa-submucosa tissue of rabbit’s esophagus was decellularized to obtain the extracellular matrix (ECM) and implanted in situ after recellularizing with bMSCs to repair the partially defected rabbits’ esophagus. On the basis of both in vitro and in vivo results, we concluded that esophagus regeneration was promoted by the differentiation of bMSCs on the biocompatible, biodegradable, and biomimetic scaffolds, starting from tissue “niches”, to repair the largely defected esophagus, which paves the way for tissue engineering and defected organ treatments.
Current clinical techniques in treating long-gap esophageal defects often lead to complications and high morbidity. Aiming at long-gap synthetic esophageal substitute, we had synthesized a biodegradable copolymer, poly(L-lactide-co-caprolactone) (PLLC), with low glass transition temperature. In this work, we developed a tubular PLLC porous scaffold using a self-designed tubular mold and thermal induced phase separation (TIPS) method. In order to enhance the interaction between tissue and scaffold, fibrin, a natural fibrous protein derived from blood fibrinogen, was coated on the scaffold circumferential surface. The fibrin density was measured to be 1.23 ± 0.04 mg/cm(2). Primary epithelial cell culture demonstrated the improved in vitro biocompatibility. In animal study with partial scaffold implantation, in situ mucosa regeneration was observed along the degradation of the scaffold. These indicate that fibrin incorporated PLLC scaffold can greatly improve epithelial regeneration in esophagus repair, therefore serve as a good candidate for long-term evaluation of post-implantation at excision site.
Polyurethane (PU) is a class of polymers that have been applied for tissue-engineering scaffolds. Cross-linked poly(ester urethane) (CPU), synthesized with ferric catalyst in our laboratory, was modified by silk fibroin (SF) grafting using our aminolysis and glutaradehyde crosslinking method. The physical and chemical properties of the materials were investigated by scanning electron microscope (SEM), atomic force microscope (AFM) and tensile tester. The results showed that SF grafted CPU possessed good strain and strength (4.29 ± 0.18 MPa/382.38 ± 0.71%). Its surface chemistry and roughness were fine to well support the growth of bone marrow mesenchymal stem cells (BMSC). The cells were verified to maintain the pluripotency after they were cultured in vitro for 2 weeks, which supplied us a good technology to keep cell's stemness but proliferate cell's number. These results are valuable for us to further study esophageal tissue engineering with BMSC and polyurethane materials as the components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.