An experiment was conducted to investigate the effects of dietary energy level on the performance and immune function of stressed broiler chickens (Gallus gallus domesticus). A total of 96 three-day-old male broiler chickens (Ross × Ross) were divided into two groups. One group received a high energy (HE) diet and the other group received a low energy (LE) diet for 7 days. At 5 days of age, the chickens from each group were further divided into two sub-groups and received one of the following two treatments for 3 days: (1) subcutaneous injection of corticosterone, twice per day (CORT group; 2 mg of CORT/kg BW in corn oil) and (2) subcutaneous injection of corn oil, twice per day (Control/Sham treatment group). At 10 days of age, samples of blood, duodenum, jejunum, and ileum were obtained. Compared with the other three groups, the LE group treated with CORT had the lowest average daily gain (ADG) and the poorest feed conversion ratio (FCR, P < 0.05). Furthermore, CORT treatment decreased the relative weight (RW) of the bursa independent of the dietary energy level, but it decreased the RW of the thymus only in the chickens fed the LE diet. By contrast, CORT administration decreased the RW of the spleen only in the chickens fed the HE diet (P < 0.05). The plasma total protein, albumin, tumor necrosis factor alpha, interleukin 2 and immunoglobulin G (IgG) levels were affected by the CORT treatment (P < 0.05); however, these factors were not significantly affected by the dietary energy level. Toll-like receptor-5 mRNA level was down-regulated by CORT injection in the duodenum and ileum (P < 0.05) and showed a trend of down-regulation in the jejunum (P=0.0846). The present study showed that CORT treatment induced immunosuppressive effects on the innate immune system of broiler chickens, which were ameliorated by consumption of higher dietary energy.
Low-light images suffer from low visibility, much noise, uneven illumination distribution, etc. Many existing methods have problems such as over enhancement or insufficient detail enhancement when dealing with low-light images with uneven illumination distribution. To remedy the above shortcomings, we proposes a Retinex-based self-supervised lowlight image enhancement model (Retinex-SIE), which is mainly composed of three parts: Retinex-based self-fsupervised image decomposition network (Retinex-DNet), nonlinear conditional illumination enhancement function (NCIEF), and image reconstruction (IR). First, a uniform illumination image of the same scene with the low-light image is generated by homomorphic filtering transformation, and the low-light image and the uniform illumination image are input into Retinex-DNet for decomposition to obtain reflectivity, noise and illumination. Then, NCIEF is used to enhance the illumination after decomposition. Finally, the final enhanced image is obtained by multiplying the decomposed reflectance and the enhanced illumination. Experiments on severa challenging low-light image datasets show that Retinex-SIE proposed in this paper can better handle low-light images with uneven illumination distribution, and avoid problems such as excessive enhancement or insufficient detail enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.