The rapid growth of power grid capacity and the widespread use of a large number of power electronics and non-linear loads have led to harmonics in the power system. Harmonics in the power system will cause safety hazards to the normal operation of power equipment, exacerbate the aging of insulation materials, and reducing the overall operation reliability of the system. In the present work, we used power frequency ac voltage superimposed harmonics to carry out ageing experiments on power cable terminals. Then, we tested the infrared spectra, dielectric spectra, electrical conductivity, and surface potential decay characteristics of silicone rubber insulation materials on the cable terminals aged for different times. The experimental results show that the dielectric constant and dielectric loss of silicone rubber gradually increase with the aging time. In particular, the dielectric loss of silicone rubber changed greatly at low frequencies. The effect of dc conductance of aged silicone rubber on dielectric loss is significantly enhanced at low frequencies, which causes the dielectric loss to increase as the frequency decreases following an inverse power law. The surface potential decay rates of silicone rubber insulation after positive and negative corona charging accelerate with increasing the aging time, which is consistent with the experimental results of electrical conductivity. By analyzing the distribution characteristics of electron and hole traps in silicone rubbers, it is found that the trap energy levels of electron and hole traps become shallower as the operating time increases. The calculation of the carrier hopping conduction model shows that the shallow trap formed with increasing the aging time will lead to increases in both carrier mobility and conductivity. When the conductivity rises to a certain value, the silicone rubber will lose its insulation performance, resulting in insulation failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.