BackgroundEmerging evidence has shown that dysregulation function of long non-coding RNAs (lncRNAs) implicated in gastric cancer (GC). However, the role of the differentially expressed lncRNAs in GC has not fully explained.MethodsLncRNA expression profiles were determined by lncRNA microarray in five pairs of normal and GC tissues, further validated in another 75 paired tissues by quantitative real-time PCR (qRT-PCR). Overexpression of lncRNA MT1JP was conducted to assess the effect of MT1JP in vitro and in vivo. The biological functions were demonstrated by luciferase reporter assay, western blotting and rescue experiments.ResultsLncRNA MT1JP was significantly lower in GC tissues than adjacent normal tissues, and higher MT1JP was remarkably related to lymph node metastasis and advance stage. Besides, GC patients with higher MT1JP expression had a well survival. Functionally, overexpression of lncRNA MT1JP inhibited cell proliferation, migration, invasion and promoted cell apoptosis in vitro, and inhibited tumor growth and metastasis in vivo. Functional analysis showed that lncRNA MT1JP regulated FBXW7 expression by competitively binding to miR-92a-3p. MiR-92a-3p and down-regulated FBXW7 reversed cell phenotypes caused by lncRNA MT1JP by rescue analysis.ConclusionMT1JP, a down-regulated lncRNA in GC, was associated with malignant tumor phenotypes and survival of GC. MT1JP regulated the progression of GC by functioning as a competing endogenous RNA (ceRNA) to competitively bind to miR-92a-3p and regulate FBXW7 expression. Our study provided new insight into the post-transcriptional regulation mechanism of lncRNA MT1JP, and suggested that MT1JP may act as a potential therapeutic target and prognosis biomarker for GC.Electronic supplementary materialThe online version of this article (10.1186/s12943-018-0829-6) contains supplementary material, which is available to authorized users.
The HOX transcript antisense intergenic RNA (HOTAIR), a well-known long noncoding RNA, is involved in pathogenesis and progress of multiple tumors. Its ectopic expression and biological functions have been observed in gastric cancer. In this study, we conducted a two-stage case-control study to evaluate whether genetic variations of HOTAIR were associated with gastric cancer risk. We identified that a single nucleotide polymorphism (SNP) rs4759314 was significantly associated with the increased gastric cancer risk with an odds ratio (OR) of 1.39 [95% confidence interval (CI) = 1.13–1.71, P = 0.002] in the combined sets. Further functional experiments revealed the allele-specific effects on HOTAIR and HOXC11 expressions in gastric cancer tissues, of which HOTAIR and HOXC11 expressions of individuals carrying with AG genotype were much higher than those with AA genotype; similarly, the effects occurred in intronic promoter activities, of which the promoter activity of G allele was more pronounced than that of A allele. Interestingly, we identified a novel potential oncogene HOXC11 in gastric cancer pathogenesis with differential expression in gastric cancer tissues by association analysis with candidate gene strategy. These results suggest that SNP rs4759314 of HOTAIR acts as a potential biomarker for predicting gastric cancer, and the role of HOXC11 in gastric cancer etiology is warranted to further investigation.
SignificanceThe cuticle, mainly composed of chitin and cuticular proteins (CPs), is a multifunctional structure of arthropods. CPs usually account for >1% of the total insect proteins encoded in the genome. Why does an insect need so many different CPs? In this study, we use comprehensive large-scale technologies to study the full complement of CPs and their functions in the brown planthopper (BPH). A total of 32 of the 140 BPH CP genes are found to be essential for nymph/adult development, egg production, or embryo development; in addition, redundant and complementary functions of CPs are revealed.
BackgroundPeanut (Arachis hypogaea) is an important crop, but droughts often affect peanut production. There is a lack of genomic information available for peanut; therefore, little is known about the molecular basis of its drought stress response.ResultsPreviously, we found that peanut stomata close rapidly during water deficit and in response to abscisic acid (ABA) treatment, and many genes show changes in their expression levels. To screen for candidate genes involved in the water deficit response, we used the Illumina HiSeq2000/MiSeq sequencing platform to conduct a global transcriptome analysis of peanut seedlings under water deficit with or without an ABA pretreatment. Three peanut tissues (leaves, roots, and stems) collected at each of three developmental stages (four-leaf, flowering, and podding stages) were used to construct sequence libraries. Then, 4.96 × 107 raw sequence reads were generated and the high quality reads were assembled into 47,842 unigenes. We analyzed these sequence libraries to identify differentially expressed genes (DEGs) under water deficit with or without ABA pretreatment. In total, 621 genes were induced rapidly (≥1.5 fold change compared with control) under water deficit, 2,665 genes were induced rapidly under water deficit + ABA pretreatment, and 279 genes overlapped between water deficit and water deficit + ABA pretreatment. Of the 279 overlapping genes, 264 showed the same expression pattern and 15 showed opposite expression patterns. Among the DEGs, 257 were highly induced (>5 fold) by water deficit + ABA pretreatment, while 19 were highly induced (>5 fold) by water deficit alone. The genes induced under water deficit + ABA pretreatment included 100 putative transcription factor (TF) genes, while those induced under water deficit alone included only 22 putative TF genes. To validate the transcriptome results, we conducted quantitative PCR (qPCR) analyses to quantify the transcript levels of nine candidate genes.ConclusionsThe DEGs results show that many genes are rapidly induced in peanut in response to water deficit without or with ABA pretreatment. The results indicate that the main drought response mechanisms in peanut function through an ABA-dependent pathway. Our data provide a comprehensive sequence resource for molecular genetics research on peanut stress responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.