Waterborne infectious disease outbreak associated with well water contamination is a worldwide public health issue, especially for rural areas in developing countries. In the current study, we characterized 20 well water samples collected from a rural area of southern Changchun city, China, and investigated the survival potential of Escherichia coli O157:H7 in those water samples. The results showed that nitrate and ammonia concentrations in some well water samples exceed the corresponding China drinking water standards, indicating potential contamination by local agricultural farms. Our results also revealed that the average survival time (ttd) of E. coli O157:H7 in all well water samples was 30.09 days, with shortest and longest ttd being 17.95 and 58.10 days, respectively. The ttds were significantly correlated with pH and the ratio of total nitrogen to total phosphorus. In addition, it was found that the shape parameter (p) and first decimal reduction parameter (δ) were negatively (P < 0.05) and positively (P < 0.05) correlated to ttd, respectively. Our study showed that E. coli O157:H7 could survive up to two months in well water, suggesting that this pathogen could constitute a great public health risk.
Pathogens that invade into the soil cancontaminate food and water, andinfect animals and human beings. It is well documented that individual bacterial phyla are well correlated with the survival of E. coliO157 (EcO157), while the interaction betweenthe fungal communities and EcO157 survival remains largely unknown. In this study, soil samples from Tongliao, Siping, and Yanji in northeast China were collected and characterized. Total DNA was extracted for fungal and bacterial community characterization. EcO157 cells were spiked into the soils, and their survival behavior was investigated. Results showed that both fungal and bacterial communities were significantly correlated (p < 0.01) with the survival of EcO157 in soils, and the relative abundances of fungal groups (Dothideomycetes and Sordariomycetes) and some bacterial phyla (Acidobacteria, Firmicutes, gamma- and delta-Proteobacteria)weresignificantly correlated with ttds (p < 0.01). Soil pH, EC (electric conductance) salinity, and water-soluble nitrate nitrogen were significantly correlated with survival time (time to reach the detection limit, ttd) (p < 0.05). The structural equation model indicated that fungal communities could directly influence ttds, and soil properties could indirectly influence the ttds through fungal communities. The first log reduction time (δ) was mainly correlated with soil properties, while the shape parameter (p) was largely correlated with fungal communities. Our data indicated that both fungal and bacterial communities were closely correlated (p < 0.05)with the survival of EcO157 in soils, and different fungal and bacterial groups might play different roles. Fungal communities and bacterial communities explained 5.87% and 17.32% of the overall variation of survival parameters, respectively. Soil properties explained about one-third of the overall variation of survival parameters. These findings expand our current understanding of the environmental behavior of human pathogens in soils.
Salmonella-contaminated well water could cause major infection outbreaks worldwide, thus, it is crucial to understand their persistence in those waters. In this study, we investigated the persistence of Salmonella enterica serovar Typhimurium in 15 well waters from a rural area of Changchun City, China. Results illustrated that the time to reach detection limit (ttd), first decimal reduction time (δ), and the shape parameter (p) ranged from 15 to 80 days, from 5.6 to 66.9 days, and from 0.6 to 6.6, respectively. Principal component analysis showed that ttds of S. Typhimurium were positively correlated with total organic carbon, pH, NH4+–N, and total phosphate. Multiple stepwise regression analysis revealed that ttds could be best predicted by NH4+–N and pH. Canonical correspondence analysis and variation partition analysis revealed that NH4+–N and pH, and the rest of the water parameters, could explain 27.60% and 28.15% of overall variation of the survival behavior, respectively. In addition, ttds were found to be correlated (p < 0.01) with δ and p. Our results showed that the longer survival (>2.5 months) S. Typhimurium could constitute an increased health risk to the local communities, and provided insights into the close linkage between well water quality and survival of S. Typhimurium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.