High‐color‐purity blue and green organic light‐emitting diodes (OLEDs) have been resolved thanks to the development of B/N‐based polycyclic multiple resonance (MR) emitters. However, due to the derivatization limit of B/N polycyclic structures, the design of red MR emitters remains challenging. Herein, a series of novel red MR emitters is reported by para‐positioning N–π–N, O–π–O, B–π–B pairs onto a benzene ring to construct an MR central core. These emitters can be facilely and modularly synthesized, allowing for easy fine‐tuning of emission spectra by peripheral groups. Moreover, these red MR emitters display excellent photophysical properties such as near‐unity photoluminescence quantum yield (PLQY), fast radiative decay rate (kr) up to 7.4 × 107 s−1, and most importantly, narrowband emission with full‐width at half‐maximum (FWHM) of 32 nm. Incorporating these MR emitters, pure red OLEDs sensitized by phosphor realize state‐of‐the‐art device performances with external quantum efficiency (EQE) exceeding 36%, ultralow efficiency roll‐off (EQE remains as high as 25.1% at the brightness of 50 000 cd m−2), ultrahigh brightness over 130 000 cd m−2, together with good device lifetime.
Rationally utilizing and developing synthetic units is of particular significance for the design of high-performance non-fullerene small-molecule acceptors (SMAs). Here, a thieno[3,2-b]pyrrole synthetic unit was employed to develop a set of SMAs (ThPy1, ThPy2, ThPy3 and ThPy4), by changing the number or the position of the pyrrole ring in the central core based on a standard SMA of IT-4Cl, compared to which the four thieno[3,2-b]pyrrole-based acceptors exhibit bathochromic absorption and upshifted frontier orbital energy level due to the strong electron-donating ability of pyrrole. As a result, the polymer solar cells (PSCs) of the four thieno[3,2-b]pyrrole-based acceptors yield higher open-circuit voltage and lower energy loss relative to those of the IT-4Cl-based device. What's more, ThPy3-based device achieves a power conversion efficiency (PCE) (15.3%) and an outstanding fill factor (FF) (0.771) that are superior to the IT-4Cl-based device (PCE = 12.6%, FF = 0.758). The ThPy4-based device realizes the lowest energy loss and the smallest optical band gap, and the ternary PSC device based on PM6:BTP-eC9:ThPy4 exhibits a PCE of 18.43% and a FF of 0.802. Overall, this work sheds light on the great potential of thieno[3,2-b]pyrrole-based SMAs in realizing low energy loss and high PCE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.