The Tibetan Plateau (TP) lakes are sensitive to climate change due to ice-albedo feedback, but almost no study has paid attention to the ice albedo of TP lakes and its potential impacts. Here we present a recent field experiment for observing the lake ice albedo in the TP, and evaluate the applicability of the Moderate Resolution Imaging Spectroradiometer (MODIS) products as well as ice-albedo parameterizations. Most of the observed lake ice albedos on TP are <0.12, and the clear blue ice albedo is only 0.075, much lower than reported in the previous studies. Even that of ice covered with snow patches is only 0.212. MOD10A1 albedo product has the best agreement with observations, followed by those of MYD10A1. MCD43A3 product is consistently higher than the observations. Due to an error of snow flag and inconsistent time windows in MCD43A2 and MCD43A3, at certain times, the albedo of the ice without snow is even higher than that covered with snow. When the solar zenith angle is not considered, there is no significant correlation between the albedo and the ice surface temperature. None of the existing ice-albedo parameterizations can reproduce well the observed relationship of the albedo and surface temperature.
Most high-altitude lakes are more sensitive to global warming than the regional atmosphere. However, most existing climate models produce unrealistic surface temperatures on the Tibetan Plateau (TP) lakes, and few studies have focused on the influence of ice surface albedo on high-altitude lakes. Based on field albedo measurements, moderate resolution imaging spectrometer (MODIS) albedo products and numerical simulation, this study evaluates the ice albedo parameterization schemes in existing lake models and investigates the characteristics of the ice surface albedo in six typical TP lakes, as well as the influence of ice albedo error in the FLake model. Compared with observations, several ice albedo schemes all clearly overestimate the lake ice albedo by 0.26 to 0.66, while the average bias of MODIS albedo products is only 0.07. The MODIS-observed albedo of a snow-covered lake varies with the snow proportion, and the lake surface albedo in a snow-free state is approximately 0.15 during the frozen period. The MODIS-observed ice surface (snow-free) albedos are concentrated within the ranges of 0.14-0.16, 0.08-0.10 and 0.10-0.12 in Aksai Chin Lake, Nam Co Lake and Ngoring Lake, respectively. The simulated lake surface temperature is sensitive to variations in lake ice albedo especially in the spring and winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.