A B S T R A C TThe Tibetan Plateau (TP) is covered by thousands of lakes which affect the regional and global heat and mass budget with important implications for the current and future climate change. However, the heat and mass budget of TP lakes and the performance of contemporary lake models over TP have not been quantified to date. We utilise 3-yr observations from Ngoring Lake, the largest lake in the Yellow River source region of TP, to investigate the typical properties of the lakeÁair boundary layer and to evaluate the performance of a simplified lake scheme from the Community Land Model version 4.5 (SLCLM) as one of the most popular lake parameterization schemes in atmospheric models. The strong boundary layer instability during the entire open-water period is a distinguishing feature of the airÁlake exchange, similar to the situation over tropical and subtropical lakes, while contrasting to the generally stable atmospheric conditions commonly observed over ice-free temperate and boreal lakes from spring to summer. The rather simple algorithm of SLCLM demonstrated good performance in these conditions. A series of sensitivity simulations with SLCLM revealed strong shortwave solar radiation and cold air temperatures because of high altitude as the primary factors causing the boundary layer instability. The outcomes of the study (1) demonstrate the role of TP lakes as accumulators of shortwave solar radiation releasing the heat into the atmosphere during the entire open-water period; (2) justify the use of simple lake models for the Tibetan highlands, while revealing remarkable uncertainties in the estimations of the latent heat flux; (3) qualify the strong cool-skin effect on the lake surface which results from permanent negative airÁlake temperature difference, and should be taken into account when interpreting remote sensing data from highland areas.
Systematic cold biases exist in the simulation for 2 m air temperature in the Tibetan Plateau (TP) when using regional climate models and global atmospheric general circulation models. We updated the albedo in the Weather Research and Forecasting (WRF) Model lower boundary condition using the Global LAnd Surface Satellite Moderate-Resolution Imaging Spectroradiometer albedo products and demonstrated evident improvement for cold temperature biases in the TP. It is the large overestimation of albedo in winter and spring in the WRF model that resulted in the large cold temperature biases. The overestimated albedo was caused by the simulated precipitation biases and over-parameterization of snow albedo. Furthermore, light-absorbing aerosols can result in a large reduction of albedo in snow and ice cover. The results suggest the necessity of developing snow albedo parameterization using observations in the TP, where snow cover and melting are very different from other low-elevation regions, and the influence of aerosols should be considered as well. In addition to defining snow albedo, our results show an urgent call for improving precipitation simulation in the TP.
application, large number of missing gaps was shown on the west of the TP, where it is considered that the retrieval algorithms are largely affected by the permafrost covered in this region, leaving the ESA soil moisture product for further improvement. In application, the ESA soil moisture product was used to study the response of surface soil moisture to climate change on the TP. With the rapid warming and the overall wetting of the TP, soil moisture increases on the central of the TP with the increase of precipitation, and decreases in the southeast TP with the precipitation deduction. However, it decreases in the west TP, where it was probably influenced by both the insignificant precipitation changes and the significant increase of evaporation.Keywords Hydrological consistency · ESA soil moisture product · Soil moisture · Precipitation · Trends · Tibetan Plateau Abstract As the first purely multi-decadal satellitebased soil moisture product that spans over 35 years (from November 1978 to December 2013) on a daily basis designed for climate application, the applicability of the European Space Agency (ESA) soil moisture product, including the hydrological consistency between the product and the observed precipitation and the product continuity on the Tibetan Plateau (TP) were investigated. The results show that there is significant degree between the ESA soil moisture product and the observed precipitation. The positive anomaly of the ESA soil moisture product can reflect the occurrences of precipitation, but the precipitation may not definitely lead to soil moisture anomaly, which largely depends on the precipitation amounts. For climate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.