Abstract. Source-mask optimization (SMO) has emerged as a key technique for 7-nm node and beyond in extreme ultraviolet (EUV) lithography. The pupil required by SMO is usually pixelated, with a free choice of intensity per pixel. However, due to the discrete nature of the EUV illumination system, pupil intensity in current EUV SMO must also be discretized. An illumination system with a freeform fly's eye that is able to generate the pixelated pupil is proposed. Clear apertures of the field facets in the fly's eye are different from each other so that the intensity of each pixel on the pupil can meet the requirements of SMO. Each of the field facets is constructed with a freeform surface to get the required arc-shaped illuminated area on the reticle. A method integrated with a numerical method and an optimization process is used to design the freeform surface of the field facets. The simulation result of the design for a prescribed freeform pixelated pupil shows that the uniformity on the reticle is 96.4%, and the pupil intensity error is approximated to be 0.035. The results indicate that the system is effective in generating the required freeform pixelated pupil and reducing the restrictions imposed on the SMO process in EUV lithography.
We have proposed and developed a design method of a freeform surfaces (FFSs) based hyper-numerical-aperture deep ultraviolet (DUV) projection objective (PO) with low aberration. With an aspheric initial configuration, lens-form parameters were used to determine the best position to remove elements and insert FFSs. The designed FFSs PO reduced two elements without increasing the total thickness of the glass materials. Compared with aspheric initial configuration, the wavefront error of the FFSs PO decreased from 0.006λ to 0.005λ, the distortion reduced from 1 to 0.5 nm, and the aspheric departure decreased from 1.7 to 1.35 mm. The results show that the design method of the FFSs PO is efficient and has improved the imaging performance of PO. The design method of FFSs PO provides potential solutions for DUV lithography with low aberrations at 10-5 nm nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.