Vessel monitoring technology involves the application of remote sensing technologies to detect and identify vessels in various environments, which is critical for monitoring vessel traffic, identifying potential threats, and facilitating maritime safety and security to achieve real-time maritime awareness in military and civilian domains. However, most existing vessel monitoring models tend to focus on a single remote sensing information source, leading to limited detection functionality and underutilization of available information. In light of these limitations, this paper proposes a comprehensive ship monitoring system that integrates remote satellite devices and nearshore detection equipment. The system employs ResNet, a deep learning model, along with data augmentation and transfer learning techniques to enable bidirectional detection of satellite cloud images and nearshore outboard profile images, thereby alleviating prevailing issues such as low detection accuracy, homogeneous functionality, and poor image recognition applicability. Empirical findings based on two real-world vessel monitoring datasets demonstrate that the proposed system consistently performs best in both nearshore identification and remote detection. Additionally, extensive supplementary experiments were conducted to evaluate the effectiveness of different modules and discuss the constraints of current deep learning-based vessel monitoring models.
Ship detection in the maritime domain awareness field has seen a significant shift towards deep-learning-based techniques as the mainstream approach. However, most existing deep-learning-based ship detection models adopt a random sampling strategy for training data, neglecting the complexity differences among samples and the learning progress of the model, which hinders training efficiency, robustness, and generalization ability. To address this issue, we propose a ship detection model called the Leap-Forward-Learning-Decay and Curriculum Learning-based Network (LFLD-CLbased NET). This model incorporates innovative strategies as Leap-Forward-Learning-Decay and curriculum learning to enhance its ship detection capabilities. The LFLD-CLbased NET is composed of ResNet as the feature extraction unit, combined with a difficulty generator and a difficulty scheduler. The difficulty generator in LFLD-CLbased NET effectively expands data samples based on real ocean scenarios, and the difficulty scheduler constructs corresponding curriculum training data, enabling the model to be trained in an orderly manner from easy to difficult. The Leap-Forward-Learning-Decay strategy, which allows for flexible adjustment of the learning rate during curriculum training, is proposed for enhancing training efficiency. Our experimental findings demonstrate that our model achieved a detection accuracy of 86.635%, approximately 10% higher than other deep-learning-based ship detection models. In addition, we conducted extensive supplementary experiments to evaluate the effectiveness of the learning rate adjustment strategy and curriculum training in ship detection tasks. Furthermore, we conducted exploratory experiments on different modules to compare performance differences under varying parameter configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.