Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting symptoms and mortality, yet the detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes were associated with distinct clinical features including age, sex, severity, and disease stages of COVID-19. SARS-CoV-2 RNAs were found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within viral positive cells. Systemic up-regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis and developing effective therapeutic strategies for COVID-19.
CSN6, a critical subunit of the constitutive photomorphogenesis 9 (COP9) signalosome (CSN), has received attention as a regulator of the degradation of cancer-related proteins such as p53, c-myc and c-Jun, through the ubiquitin-proteasome system, suggesting its importance in cancerogenesis. However, the biological functions and molecular mechanisms of CSN6 in glioblastoma (GBM) remain poorly understood. Here, we report that GBM tumors overexpressed CSN6 compared with normal brain tissues and that CSN6 promoted GBM cell proliferation, migration, invasion and tumorigenesis. Erlotinib, a small-molecule epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, was used to reveal that the proliferative and metastatic effects of CSN6 on GBM cells were EGFR dependent. We also found that CSN6 positively regulated EGFR stability via reduced levels of EGFR ubiquitination, thereby elevating steady expression of EGFR. In addition, this study is the first description of a novel role for the CSN6-interacting E3 ligase, CHIP (carboxyl terminus of heat-shock protein 70-interacting protein), regulating EGFR ubiquitination in cancer cells. We showed that CSN6 associated with CHIP and led to CHIP destabilization by increasing CHIP self-ubiquitination. Moreover, CSN6 decreased CHIP expression and increased EGFR expression in the tumor samples. Deregulation of this axis promoted GBM cell's proliferation and metastasis. Thus, our study provides insights into the applicability of using the CSN6-CHIP-EGFR axis as a potential therapeutic target in cancer.
Histone deacetylase 9 (HDAC9), a member of class II HDACs, regulates a wide variety of normal and abnormal physiological functions. We found that HDAC9 is over-expressed in prognostically poor glioblastoma patients. Knockdown HDAC9 decreased proliferation in vitro and tumor formation in vivo. HDAC9 accelerated cell cycle in part by potentiating the EGFR signaling pathway. Also, HDAC9 interacted with TAZ, a key downstream effector of Hippo pathway. Knockdown of HDAC9 decreased the expression of TAZ. We found that overexpressed TAZ in HDAC9-knockdown cells abrogated the effects induced by HDAC9 silencing both in vitro and in vivo. We demonstrated that HDAC9 promotes tumor formation of glioblastoma via TAZ-mediated EGFR pathway activation, and provide the evidence for promising target for the treatment of glioblastoma.
Background Global distributions and trends of the risk-attributable burdens of chronic obstructive pulmonary disease (COPD) have rarely been systematically explored. To guide the formulation of targeted and accurate strategies for the management of COPD, we analyzed COPD burdens attributable to known risk factors. Methods Using detailed COPD data from the Global Burden of Disease study 2019, we analyzed disability-adjusted life years (DALYs), years lived with disability (YLDs), years of life lost (YLLs), and deaths attributable to each risk factor from 1990 to 2019. Additionally, we calculated estimated annual percentage changes (EAPCs) during the study period. The population attributable fraction (PAF) and summary exposure value (SEV) of each risk factor are also presented. Results From 1990 to 2019, the age-standardized DALY and death rates of COPD attributable to smoking and household air pollution, occupational particles, secondhand smoke, and low temperature presented consistently declining trends in almost all socio-demographic index (SDI) regions. However, the decline in YLD was not as dramatic as that of the death rate. In contrast, the COPD burden attributable to ambient particulate matter, ozone, and high temperature exposure showed undesirable increasing trends in the low- and low-middle-SDI regions. In addition, the age-standardized DALY and death rates attributable to each risk factor except household air pollution and low temperature were the highest in the low-middle-SDI region. In 2019, the COPD burden attributable to smoking ambient particulate matter, ozone, occupational particles, low and high temperature was obviously greater in males than in females. Meanwhile, the most important risk factors for female varied across regions (low- and low-middle-SDI regions: household air pollution; middle-SDI region: ambient particles; high-middle- and high-SDI region: smoking). Conclusions Increasing trends of COPD burden attributable to ambient particulate matter, ozone, and high temperature exposure in the low-middle- and low-SDI regions call for an urgent need to implement specific and effective measures. Moreover, considering the gender differences in COPD burdens attributable to some risk factors such as ambient particulate matter and ozone with similar SEV, further research on biological differences between sexes in COPD and relevant policy-making of disease prevention are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.