Covalent organic frameworks (COFs) are attractive candidates for advanced water-treatment membranes owing to their high porosity and well-organized channel structures. Herein, the continuous two-dimensional imine-linked COF-LZU1 membrane with a thickness of only 400 nm was prepared on alumina tubes by in situ solvothermal synthesis. The membrane shows excellent water permeance (ca. 760 L m h MPa ) and favorable rejection rates exceeding 90 % for water-soluble dyes larger than 1.2 nm. The water permeance through the COF-LZU1 membrane is much higher than that of most membranes with similar rejection rates. Long-time operation demonstrates the outstanding stability of the COF-LZU1 membrane. As the membrane has no selectivity for hydrated salt ions (selectivity <12 %), it is also suitable for the purification of dye products from saline solutions. The excellent performance and the outstanding water stability render the COF-LZU1 membrane an interesting system for water purification.
Covalent organic frameworks (COFs) have been proposed as alternative candidates for molecular sieving membranes due to their chemical stability. However, developing COF membranes with narrowed apertures close to the size of common gas molecules is a crucial task for selective gas separation. Herein, we demonstrate a new type of a two-dimensional layered-stacking COF-COF composite membrane in bilayer geometry synthesized on a porous support by successively regulating the growth of imine-based COF-LZU1 and azine-based ACOF-1 layers via a temperature-swing solvothermal approach. The resultant COF-LZU1-ACOF-1 bilayer membrane has much higher separation selectivity for H/CO, H/N, and H/CH gas mixtures than the individual COF-LZU1 and ACOF-1 membranes due to the formation of interlaced pore networks, and the overall performance surpasses the Robeson upper bounds. The COF-LZU1-ACOF-1 bilayer membrane also shows high thermal and long-time stabilities.
Surface enhanced Raman spectroscopy (SERS) is a powerful optical sensing technique that can detect analytes of extremely low concentrations. However, the presence of enough SERS probes in the detection area and a close contact between analytes and SERS probes are critical for efficient acquisition of a SERS signal. Presented here is a light-powered micro/nanomotor (MNM) that can serve as an active SERS probe. The matchlike AgNW@SiO core-shell structure of the nanomotors work as SERS probes based on the shell-isolated enhanced Raman mechanism. The AgCl tail serves as photocatalytic nanoengine, providing a self-propulsion force by light-induced self-diffusiophoresis. The phototactic behavior was utilized to achieve enrichment of the nanomotor-based SERS probes for on-demand biochemical sensing. The results demonstrate the possibility of using photocatalytic nanomotors as active SERS probes for remote, light-controlled, and smart biochemical sensing on the micro/nanoscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.