Background
This study aimed to investigate the clinical and pathological characteristics, and the recurrence and prognostic factors of borderline ovarian tumors (BOTs).
Methods
The data of 286 patients admitted to hospital and followed up for more than ten months were analyzed retrospectively to study the clinicopathological characteristics and related factors of recurrence.
Results
The median age of the patients was 42.06 ± 14.97 years, and the duration of the follow-up ranged from 10–109 months. During the follow-up period, 40 patients had a recurrence. Of these patients, 36 were ≤ 40 years, and patients with premenopausal recurrence accounted for 20.5% (36/176). In patients undergoing conservative treatment or radical operations, the recurrence rates were 21.3% and 1.8%, respectively, and they were 13.4% (36/268) in patients at Federation International of Gynecology and Obstetrics (FIGO) stage I, and 22.2% (4/18) in patients at an advanced stage. Postoperative pathology revealed that 40 patients had micropapillary tumors, among whom ten patients (25%) had a recurrence, and 19 patients had complications with interstitial infiltration. Of these 19 patients, six had a recurrence (31.5%). Another 22 patients had complications with calcified sand bodies; among these, eight patients (36.4%) had a recurrence. All the differences were statistically significant (P < 0.05). There were four cancer-related deaths during the follow-up period. Late FIGO stage, conservative operation, and a high level of carbohydrate antigen 125 (CA125) were independent risk factors for the recurrence of BOTs.
Conclusion
BOTs usually occur in women under 40 years, have an occult onset, and half of the patients have no obvious clinical manifestations. Serum CA125 level can be used as a tumor marker to detect BOTs and the risk of its recurrence. Operation mode and FIGO stage are important independent factors for the recurrence of BOTs.
The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3; also called Machado-Joseph disease, MJD) is a trinucleotide repeat disorder caused by expansion of the CAG repeats in the ATXN3 gene. Here, we applied a CRISPR/Cas9-mediated approach using homologous recombination to achieve a one-step genetic correction in SCA3-specific induced pluripotent stem cells (iPSCs). The genetic correction reversed disease-associated phenotypes during cerebellar region-specific differentiation. In addition, we observed spontaneous ataxin-3 aggregates specifically in mature cerebellar neurons differentiated from SCA3 iPSCs rather than in SCA3 pan-neurons, SCA3 iPSCs or neural stem cells, suggesting that SCA3 iPSC-derived disease-specific and region-specific cerebellar neurons can provide unique cellular models for studying SCA3 pathogenesis in vitro. Importantly, the genetically corrected cerebellar neurons did not display typical SCA3 aggregates, suggesting that genetic correction can subsequently reverse SCA3 disease progression. Our strategy can be applied to other trinucleotide repeat disorders to facilitate disease modeling, mechanistic studies and drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.