Marine current energy as a kind of renewable energy has gradually attracted more and more attention from many countries. However, the blade imbalance fault of marine current turbines (MCTs) will have an effect on the power production efficiency and cause damage to the MCT system. It is hard to classify the severity of an MCT blade imbalance fault under the condition of the current instability and seafloor noise. This paper proposes a fault classification method based on the combination of variational mode decomposition denoising (VMD denoising) and screening linear discriminant analysis (S-LDA). The proposed method consists of three parts. Firstly, phase demodulation of the collected stator current signal is performed by the Hilbert transform (HT) method. Then, the obtained demodulation signal is denoised by variational mode decomposition denoising (VMD denoising), and the denoised signal is analyzed by power spectral density (PSD). Finally, S-LDA is employed on the power signal to determine the severities of fault classification. The effectiveness of the proposed method is verified by experimental results under different severities of blade imbalance fault. The stator current signatures of experiments with different severities of blade imbalance fault are used to validate the effectiveness of the proposed method. The fault classification accuracy is 92.04% based on the proposed method. Moreover, the experimental results verify that the influence of velocity fluctuation on fault classification can be eliminated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.