Rice stripe virus (RSV) causes severe diseases in Oryza sativa (rice) in many Eastern Asian countries. Disease-specific protein (SP) of RSV is a non-structural protein and its accumulation level in rice plant was shown to determine the severity of RSV symptoms. Here, we present evidence that expression of RSV SP alone in rice or Nicotiana benthamiana did not produce visible symptoms. Expression of SP in these two plants, however, enhanced RSV- or Potato virus X (PVX)-induced symptoms. Through yeast two-hybrid screening, GST pull-down, and bimolecular fluorescence complementation assays, we demonstrated that RSV SP interacted with PsbP, a 23-kDa oxygen-evolving complex protein, in both rice and N. benthamiana. Furthermore, our investigation showed that silencing of PsbP expression in both plants increased disease symptom severity and virus accumulation. Confocal microscopy using N. benthamiana protoplast showed that PsbP accumulated predominantly in chloroplast in wild-type N. benthamiana cells. In the presence of RSV SP, most PsbP was recruited into cytoplasm of the assayed cells. In addition, accumulation of SP during RSV infection resulted in alterations of chloroplast structure and function. Our findings shed light on the molecular mechanism underlying RSV disease symptom development.
Macroautophagy/autophagy plays an important role against pathogen infection in mammals and plants. However, little has been known about the role of autophagy in the interactions of insect vectors with the plant viruses, which they transmit. Begomoviruses are a group of single-stranded DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. In this study, we found that the infection of a begomovirus, tomato yellow leaf curl virus (TYLCV) could activate the autophagy pathway in the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex as evidenced by the formation of autophagosomes and ATG8-II. Interestingly, the activation of autophagy led to the subsequent degradation of TYLCV coat protein (CP) and genomic DNA. While feeding the whitefly with 2 autophagy inhibitors (3-methyladenine and bafilomycin A 1 ) and silencing the expression of Atg3 and Atg9 increased the viral load; autophagy activation via feeding of rapamycin notably decreased the amount of viral CP and DNA in the whitefly. Furthermore, we found that activation of whitefly autophagy could inhibit the efficiency of virus transmission; whereas inhibiting autophagy facilitated virus transmission. Taken together, these results indicate that TYLCV infection can activate the whitefly autophagy pathway, which leads to the subsequent degradation of virus. Furthermore, our report proves that an insect vector uses autophagy as an intrinsic antiviral program to repress the infection of a circulative-transmitted plant virus. Our data also demonstrate that TYLCV may replicate and trigger complex interactions with the insect vector.
BackgroundThe white backed planthopper (WBPH), Sogatella furcifera (Horváth), causes great damage to many crops by direct feeding or transmitting plant viruses. Southern rice black-streaked dwarf virus (SRBSDV), transmitted by WBPH, has become a great threat to rice production in East Asia.Methodology/Principal FindingsBy de novo transcriptome assembling and massive parallel pyrosequencing, we constructed two transcriptomes of WBPH and profiled the alternation of gene expression in response to SRBSDV infection in transcriptional level. Over 25 million reads of high-quality DNA sequences and 81388 different unigenes were generated using Illumina technology from both viruliferous and non-viruliferous WBPH. WBPH has a very similar gene ontological distribution to other two closely related rice planthoppers, Nilaparvata lugens and Laodelphax striatellus. 7291 microsatellite loci were also predicted which could be useful for further evolutionary analysis. Furthermore, comparative analysis of the two transcriptomes generated from viruliferous and non-viruliferous WBPH provided a list of candidate transcripts that potentially were elicited as a response to viral infection. Pathway analyses of a subset of these transcripts indicated that SRBSDV infection may perturb primary metabolism and the ubiquitin-proteasome pathways. In addition, 5.5% (181 out of 3315) of the genes in cell cytoskeleton organization pathway showed obvious changes. Our data also demonstrated that SRBSDV infection activated the immunity regulatory systems of WBPH, such as RNA interference, autophagy and antimicrobial peptide production.Conclusions/SignificanceWe employed massively parallel pyrosequencing to collect ESTs from viruliferous and non-viruliferous samples of WBPH. 81388 different unigenes have been obtained. We for the first time described the direct effects of a Reoviridae family plant virus on global gene expression profiles of its insect vector using high-throughput sequencing. Our study will provide a road map for future investigations of the fascinating interactions between Reoviridae viruses and their insect vectors, and provide new strategies for crop protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.