Abstract:With the rapid development of microgrids (MGs) in recent years, it is anticipated that combinations of multiple microgrids-multi-microgrids (MMGs)-will gradually become a new form of power grid. A safe and efficient black start strategy for MMGs is in urgent demand because of their complicated structure and control systems. In this paper, first, we analyze the topology and control system of residential-type MMGs with three-phase/single-phase (TP/SP) architecture. Second, a black start strategy based on a hierarchical control scheme is presented, including the selection strategy for the main power supply and master microgrid, the stand-alone operation strategy, and the grid-connected operation strategy. After the selection of the main power supplies, the master MG is determined. Hereby, all sub-microgrids (SMGs) execute the stand-alone algorithm. When the synchronous connection condition is satisfied, the slave SMGs connect to the master MG who provides the voltage and frequency support. Meanwhile, the control algorithm transfers to the grid-connected algorithm, with the grid dispatching value set to zero. Finally, experimental results from the MMG experimental setup in the Clean Energy Technology Laboratory (CETLAB) are presented to verify the effectiveness and feasibility of the proposed black start strategy.
Abstract:A scientific and effective coordinated control strategy is crucial to the safe and economic operation of a microgrid (MG). With the continuous improvement of the renewable energy source (RES) penetration rate in MG, the randomness and intermittency of its output lead to the increasing regulation pressure of the conventional controllable units, the increase of the operating risk of MG and the difficulty in improving the operational economy. To solve the mentioned problems and take advantage of hybrid energy storage system (HESS), this study proposes a multi-time scale coordinated control scheme of "day-ahead optimization (DAO) + intraday rolling (IDR) + quasi-real-time correction (QRTC) + real-time coordinated control (RTCC)." Considering the shortcomings of existing low prediction accuracy of distributed RES and loads, the soft constraints such as unit commitment scheduling errors and load switching scheduling errors are introduced in the intraday rolling model, allowing the correction of day-ahead unit commitment and load switching schedule. In the quasi-real-time coordinated control, an integrated criterion is introduced to decide the adjustment priority of the distributed generations. In the real-time coordinated control, the HESS adopts an improved first order low pass filtering algorithm to adaptively compensate the second-level unbalanced power. Compared with the traditional coordinated control strategy, the proposed improved model has the advantages of good robustness and fast solving speed and provides some guidance for the intelligent solution for stable and economic operation of stand-alone MG with HESS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.