Emerging evidence indicates that epidermal growth factor (EGF) signaling plays a positive role in myelin development and repair, but little is known about its biological effects on the early generation and differentiation of oligodendrocyte (OL) lineage cells. In this study, we investigated the role of EGF in early OL development with isolated glial restricted precursor (GRP) cells. It was found that EGF collaborated with Platelet Derived Growth Factor-AA (PDGFaa) to promote the survival and self-renewal of GRP cells, but predisposed GRP cells to develop into O4− early-stage oligodendrocyte precursor cells (OPCs) in the absence of or PDGFaa. In OPCs, EGF synergized with PDGFaa to maintain their O4 negative antigenic phenotype. Upon PDGFaa withdrawal, EGF promoted the terminal differentiation of OPCs by reducing apoptosis and increasing the number of mature OLs. Together, these data revealed that EGF is an important mitogen to enhance oligodendroglial development.
Mouse primary oligodendrocyte precursor cells (OPCs) are increasingly used to study the molecular mechanisms underlying the phenotype changes in oligodendrocyte differentiation and axonal myelination observed in transgenic or mutant mouse models. However, mouse OPCs are much more difficult to be isolated by the simple dissociation culture of brain tissues than their rat counterparts. To date, the mechanisms underlying the species difference in OPC preparation remain obscure. In this study, we showed that astrocytes from rats have a stronger effect than those from mouse in promoting OPC proliferation and survival in vitro. Mouse astrocytes displayed significantly weaker viability in culture and reduced potential in maintaining OPC self-renewal, as confirmed by culturing OPCs with conditioned media from rat or mouse astrocytes. These results explained the reason for why stratified cultures of OPCs and astrocytes are difficult to be achieved in mouse CNS tissues. Based on these findings, we adopted inactivated rat astrocytes as feeder cells to support the self-renewal of mouse cortical OPCs and preparation of high-purity mouse OPCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 907-916, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.