A one-way electric-car-sharing system is an environmentally friendly option for urban transportation systems, which can reduce air pollution and traffic congestion with effective vehicle assignment. However, electric vehicle assignment usually faces a dilemma where an insufficient battery level cannot fulfill the requests of users. It greatly affects assignment choices and order fulfillment rates, resulting in the loss of platform profit. In this study, with the assumption that the users agree to wait for a period of time during which electric vehicles can be charged to fulfill trip demands, we proposed a waiting-time policy and introduced users’ utility to measure user retention. Then, we set up a bi-level electric-vehicle assignment model with a waiting-time policy to optimize the assignment and waiting decisions. The numerical results show that under the waiting-time policy, we can achieve more profits, a higher trip fulfillment rate, and a significant improvement in vehicle utilization. It not only generates more profits for the platform but also provides a better service for users and lays a user foundation for the future development and operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.