In order to better understand the damage tolerance of reinforced composite plates, the impact damage of the reinforced composite plates was investigated under low-velocity impact test. The experimental results show that the impact of different positions and energies causes different degrees of damage to the specimens, including but not limited to ply fracture, internal delamination of the skin, and debonding of the stiffeners and skin. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different forms of impact. The impact point has the greatest influence on the specimen while it locates at the intersection of longitudinal and transverse bars. Compared with the intact specimen, the ultimate load carrying capacity was reduced by 16.83% and 44.02%, while the specimen impacted by 15 J and 30 J, respectively. The compression failure mode of the damaged specimen is mainly the breakage of the stiffeners and the delamination of the skin.
In this study, the foam sandwich panels were manufactured by integrating top facesheet and bottom facesheet with pyramidal lattice stitched core to overcome the weak interface between the core and skins of the sandwich structures. Low-velocity impact test and numerical simulation were conducted to reveal the failure mechanisms and energy absorption capacity at sandwich composite with foam core, different strut stitched foam core under different impact energy. The experimental results show showed that the strut core can improve the impact resistance of the specimen, and which is closely related to the diameter of the strut core. Compared with foam sandwich structure, pyramidal lattice stitched foam sandwich composites have comparable specific energy absorptions. The failure modes were also analyzed which is: fiber breakage, delamination, foam deformation and strut core breakage. The research presented here confirms that numerical simulation show good agreement with the experiment.
The low-velocity impact and compression after the impact of the composite stiffened panels were carried out after damp-heat aging. The experimental results show that reinforcing the ribs can enhance the impact resistance of test pieces after damp-heat aging. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different located positions of the impact and different aging times. Compared with the intact specimen, the ultimate load-bearing capacity was reduced to 16.83, 12.10, and 17.10% with the specimen aging for 0, 45, and 90 days, respectively, while the impact position located at the intersection of longitudinal and transverse bars has the greatest influence on the damp-heat aging of specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.