Ammonium ions have positive effects on the sulfidization flotation of malachite; however, the underlying mechanisms remain poorly understood. In the present work, micro-flotation tests, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and solution analysis for ammonium nitrogen were carried out. The flotation results showed positive effects of ammonium on the sulfidization flotation of malachite. Macroscopically, the sulfidized malachite produced with ammonium exhibited a darker color than that without ammonium, whereas the opposite appeared to be true for their corresponding residual liquids. FESEM images highlighted the larger particle size and higher converge density of the sulfidization product when the presence of ammonium. Furthermore, XPS results indicated a higher sulfur concentration on malachite surfaces when the presence of ammonium. XRD results showed that Cu31S16 (djurleite) and Cu7S4 (anilite) comprised the sulfidization products, regardless of the presence or absence of ammonium. However, neither EDS nor XPS analysis showed nitrogen on malachite surfaces; moreover, the residual-ratio results for ammonium nitrogen clearly demonstrated that most ammonium continued to be held in solution before and after malachite sulfidization. Based on these findings, we inferred that ammonium ions may mediate the nucleation and growth of sulfidization product during malachite sulfidization, rendering larger sulfidization product particles. The larger size of sulfidization products may result in a darker, stabler and denser sulfidization product coating layer, and then may reduce the generation of colloidal copper sulfide in the residual liquids. Ultimately, ammonium facilitates better performance of sulfidization flotation of malachite.
Sulfidization is required in the amine flotation of smithsonite; however, the sulfidization mechanism of smithsonite is still not fully understood. In this work, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS) were used to characterize sulfidized and unsulfidized smithsonite. The XPS and UV–vis DRS analyses showed that smithsonite sulfidization is a transformation of ZnCO3 to ZnS on the smithsonite surfaces. However, this transformation is localized, resulting in the coexistence of ZnCO3 and ZnS or in the formation of ZnS island structures on the sulfidized smithsonite surfaces. AFM height imaging showed that sulfidization can substantially change the surface morphology of smithsonite; in addition, AFM phase imaging demonstrated that sulfidization occurs locally on the smithsonite surfaces. Based on our findings, it can be concluded that smithsonite sulfidization is clearly a heterogeneous solid–liquid reaction in which the solid product attaches at the surfaces of unreacted smithsonite. Smithsonite sulfidization involves heterogeneous nucleation and growth of ZnS nuclei. Moreover, the ZnS might nucleate and grow preferentially in the regions with high reactivity, which might account for the formation of ZnS island structures. In addition, sphalerite-structured ZnS is more likely to be the sulfidization product of smithsonite under flotation-relevantconditions, as also demonstrated by the results of our UV–vis DRS analyses. The results of this study can provide deeper insights into the sulfidization mechanism of smithsonite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.