Drought projections are accompanied with large uncertainties due to varying estimates of future warming scenarios from different modelling and forcing data. Using the Standardized Precipitation Index (SPI), this study presents a global assessment of uncertainties in drought characteristics (severity S and frequency Df) projections based on the simulations of 28 general circulation models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). A hierarchical framework incorporating a variance–based global sensitivity analysis was developed to quantify the uncertainties in drought characteristics projections at various spatial (global and regional) and temporal (decadal and 30-yr) scales due to 28 GCMs, 3 Representative Concentration Pathway scenarios (RCP2.6, RCP4.5, RCP8.5), and 2 bias-correction (BC) methods. The results indicated that the largest uncertainty contribution in the globally projected S and Df is from the GCM (>60%), followed by BC (<35%) and RCP (<16%). Spatially, BC reduces the spreads among GCMs particularly in Northern Hemisphere (NH), leading to smaller GCM uncertainty in NH than Southern Hemisphere (SH). In contrast, the BC and RCP uncertainties are larger in NH than SH, and the BC uncertainty can be larger than GCM uncertainty for some regions (e.g., southwest Asia). At the decadal and 30-yr timescales, the contributions for 3 uncertainty sources show larger variability in S than Df projections, especially in SH. The GCM and BC uncertainties show overall decreasing trends with time, while the RCP uncertainty is expected to increase over time and even can be larger than BC uncertainty for some regions (e.g., northern Asia) by the end of this century.
Comparison and quantification of different uncertainties of future climate change involved in the modeling of a hydrological system are highly important for both hydrological modelers and policy-makers. However, few studies have accurately estimated the relative importance of different sources of uncertainty at different spatiotemporal scales. Here, a hierarchical sensitivity analysis framework (HSAF) incorporated with a variance-based global sensitivity analysis is developed to quantify the spatiotemporal contributions of different uncertainties in hydrological impacts of climate change in two different climatic (humid and semiarid) basins in China. The uncertainty sources include 3 emission scenarios (ESs), 20 global climate models (GCs), 3 hydrological models (HMs), and the associated sensitive hydrological parameters (PAs) screened and sampled by the Morris and Latin hypercube sampling methods, respectively. The results indicate that the overall trend of uncertainty is PA > HM > GC > ES, but their uncertainties have discrepancies in projections of different hydrological variables. The HM uncertainty in annual and monthly discharge projections is generally larger than the PA uncertainty in the humid basin than semiarid basin. The PA has greater uncertainty in extreme hydrological event (annual peak discharge) projections than in annual discharge projections for both basins (particularly for the humid basin), but contributes larger uncertainty to annual and monthly discharge projections in the semiarid basin than humid basin. The GC contributes larger uncertainty in all the hydrological variables projections in the humid basin than semiarid basin, while the ES uncertainty is rather limited in both basins. Overall, our results suggest there is greater spatiotemporal variability of hydrological uncertainty in more arid regions.
Oases are vital habitat areas for both humans and wild plants and animals in desert areas of arid Northwestern China. The efficient management of oasis water resources, especially groundwater resources, is very important for the environmental sustainability and economic development of the region. Pumping wells play a vital role in the oasis groundwater supply; therefore, optimizing the layout of these wells is essential for water resource management. In this study, we present a novel optimization methodology that implements a genetic algorithm and nonlinear programming model for the layout of pumping wells. The methodology was tested and evaluated in the real oasis case study of Qira Oasis located in southern Xinjiang Province, China. The optimization result shows that only 68 pumping wells are required for irrigation purposes of Qira Oasis, and this layout reduces the number of current pumping wells strongly by 59%. Thus, a large number of pumping wells can be closed to save resources. The optimizing method presented in this research is mathematically general and can be applied to other oasis areas without any obstacles. This method can provide decision-makers and managers with key information to ensure the optimal management and safety of valuable groundwater resources in oases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.