Abstract. Pareto Local Search (PLS) is a basic building block in many state-of-the-art multiobjective combinatorial optimization algorithms. However, the basic PLS requires a long time to find high-quality solutions. In this paper, we propose and investigate several parallel strategies to speed up PLS. These strategies are based on a parallel multi-search framework. In our experiments, we investigate the performances of different parallel variants of PLS on the multiobjective unconstrained binary quadratic programming problem. Each PLS variant is a combination of the proposed parallel strategies. The experimental results show that the proposed approaches can significantly speed up PLS while maintaining about the same solution quality. In addition, we introduce a new way to visualize the search process of PLS on twoobjective problems, which is helpful to understand the behaviors of PLS algorithms.
Pareto Local Search (PLS) is a basic building block in many metaheuristics for Multiobjective Combinatorial Optimization Problem (MCOP). In this paper, an enhanced PLS variant called Parallel Pareto Local Search based on Decomposition (PPLS/D) is proposed. PPLS/D improves the efficiency of PLS using the techniques of parallel computation and problem decomposition. It decomposes the original search space into L subregions and executes L parallel processes searching in these subregions simultaneously. Inside each subregion, the PPLS/D process is guided by a unique scalar objective function. PPLS/D differs from the well-known Two Phase Pareto Local Search (2PPLS) in that it uses the scalar objective function to guide every move of the PLS procedure in a fine-grained manner. In the experimental studies, PPLS/D is compared against the basic PLS and a recently proposed PLS variant on the multiobjective Unconstrained Binary Quadratic Programming problems (mUBQPs) and the multiobjective Traveling Salesman Problems (mTSPs) with at most four objectives. The experimental results show that, no matter whether the initial solutions are randomly generated or generated by heuristic methods, PPLS/D always performs significantly better than the other two PLS variants.Jialong Shi is with the
Local search is a basic building block in memetic algorithms. Guided Local Search (GLS) can improve the efficiency of local search. By changing the guide function, GLS guides a local search to escape from locally optimal solutions and find better solutions. The key component of GLS is its penalizing mechanism which determines which feature is selected to penalize when the search is trapped in a locally optimal solution. The original GLS penalizing mechanism only makes use of the cost and the current penalty value of each feature. It is well known that many combinatorial optimization problems have a big valley structure, i.e., the better a solution is, the more the chance it is closer to a globally optimal solution. This paper proposes to use big valley structure assumption to improve the GLS penalizing mechanism. An improved GLS algorithm called Elite Biased GLS (EB-GLS) is proposed. EB-GLS records and maintains an elite solution as an estimate of the globally optimal solutions, and reduces the chance of penalizing the features in this solution. We have systematically tested the proposed algorithm on the symmetric traveling salesman problem. Experimental results show that EB-GLS is significantly better than GLS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.