This study evaluated the therapeutic efficacy of Schisandrin A on systemic colibacillosis of chickens. One hundred and eighty, 1-day-old Hailan Brown chickens were divided into 6 groups of 30 chickens each and assigned to the following treatments: 1) uninfected/untreated control; 2) infected Escherichia coli ; 3) infected-plus low dose of Schisandrin A therapy (50 mg/kg); 4) infected-plus medium dose of Schisandrin A therapy (100 mg/kg); 5) infected-plus high dose of Schisandrin A therapy (200 mg/kg) and 6) infected-plus antimicrobial therapy (florfenicol). Each group of chickens was placed in cages with a photoperiod of 12 h of light and 12 h of dark. Feed and water for all groups were provided ad libitum for the duration of the study. On d 14, all the chickens except the uninfected control group were intraperitoneally inoculated with a fresh culture of E. coli containing 1 × 10 8 CFU/mL. The parameters measured included: average daily weight gain ( ADG ), percent survivability, liver index, serum activity of enzymes (ALT and AST), hepatic and intestinal concentrations of TNF-α, IL-1β, IL-6, IL-8, and LPS, expression of tight junction proteins (occludin, ZO-1, and claudin-1), relative abundance of bacterial species and histopathological changes in hepatic and intestinal tissue. The results showed that the medium and high doses of Schisandrin A ameliorated the detrimental effects of colibacillosis on weight gain. Regarding organ indexes, E. coli infection induced a significant increase in liver index, all the doses of Schisandrin A produced a significant reduction of liver index in comparison to the E. coli infected control. Serum activity of ALT and AST enzymes significantly increased due to E. coli infection, with the exception of the low dose of Schisandrin A for AST enzyme activity, all the Schisandrin A treatments significantly lowered enzyme activity in comparison to the E. coli infected control. Regarding concentrations of inflammatory markers in hepatic and intestinal, E. coli infection caused a significant increase in TNF-α, IL-1β, IL-6, and IL-8, except the lowest dose of Schisandrin A for IL-1β, the rest of the doses tested were able to significantly reduced the concentrations of inflammatory markers. Concentrations of LPS in hepatic and intestinal tissues were significantly increased by E. coli infection, all doses of Schisandrin A significantly reduced the concentration of LPS in hepatic and intestinal tissue. E. coli infection significantly reduced the expression of 2 tight junction proteins (ZO-1 and Claudin-1), the higher doses of Schisandrin A were effective in significantly increasing the expression of these tight junction proteins when compared with the E. coli infected control. Taken together, these results show that...
To investigate the mechanism per uorooctanoic acid (PFOA)'s toxicity on the uterus and liver of the mice during early pregnancy, pregnant mice were given 0, 1, 5, 10, 20, 40 mg/kg PFOA daily by gavage from gestational day (GD) 1-7, and sacri ced on GD 9. Uterus and liver weight were recorded, liver and uterine indexes were calculated, histopathological changes of the liver and uterus were examined, and levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) in liver were detected by spectrophotometric method. Expression of FAS, FASL, Bax, Bcl-2, and Caspase-3 in decidual cells were detected by immunohistochemistry and the TUNEL method was used to detect apoptotic uterine cells. Results showed that liver weight increased, and the uterus index was signi cantly reduced at 40 mg/kg compared with the control group. With increasing doses of PFOA, levels of SOD and GSH-PX were signi cantly decreased, and MDA signi cantly increased in liver tissue. 20 mg/kg and 40 mg/kg of PFOA caused greater harm to the uterus and congestion and resorption may occur. Expression of FAS, FASL, Bax, and Caspase-3 in decidual cells of the uterus in PFOA treatment groups signi cantly increased in a dose-dependent manner. The expression of Bcl-2 was down-regulated, which decreased the ratio of Bcl-2/Bax. It is therefore proposed that oxidative damage may be one of the mechanisms by which PFOA induces liver toxicity, and a subsequent increase in uterine cell apoptosis may induce embryo loss or damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.