Smoking seriously affects oral health and causes a variety of oral diseases. Numerous clinical data show that smoking significantly increases the risk of periodontitis, and the duration and amount of smoking are positively correlated with the severity of periodontitis. In fact, smoking creates an environment conducive to the colonization of periodontopathogens, which affects the process of periodontitis. Since subgingival plaque which harbors periodontopathogens is the initiation factor of periodontitis, it is critical to study the impact of smoking on subgingival microbiota for understanding the relationship between smoking and periodontitis. Continuous advances have been made on the understanding of effects of smoking on subgingival plaque and the development of periodontitis. Smoking is observed to enhance the pathogenicity of periodontopathogens, especially the red complex microorganisms, via promoting their colonization and infection, and regulating the expression and function of multiple virulence factors. Furthermore, smoking has a negative impact on periodontal microecological homeostasis, which is reflected in the decrease of commensal bacteria and the increase of periodontopathogens, as well as the changes in the interaction between periodontopathogens and their commensal microbes in subgingival biofilm, thus influencing the pathogenicity of the subgingival plaque. In summary, the mechanism of smoking on subgingival plaque microorganisms represented by the red complex and its effect on the periodontal microecology still need to be further explored. The relevant research results are of great significance for guiding the periodontal clinical treatment of smoking population. This review summarizes the effects and relevant mechanisms of smoking on subgingival plaque and the development of periodontitis.
Nanohydroxyapatite (nHAp) has gained considerable concerns due to its vast potential in biomedical applications such as drug delivery, tissue engineering and bone repair. However, the preparation of HAp nanostructures in a controllable manner under environment-friendly reaction conditions remains a challenge. In recent years, the use of biological macromolecules or proteins as templates in the production of nanomaterials has gained more attention due to the relatively mild physical conditions needed for biomimetic synthesis. In this study, a novel nHAp was fabricated by employing bovine serum albumin (BSA) as template under mild condition. After that, the as-obtained nanostructured materials which have well-defined structures and morphologies were characterized by various methods. Furthermore, the rod-like shaped hydroxyapatite demonstrated improved stability properties, as well as cell viability and biocompatibility, compared to BSA free synthesized c-HAp. We expect that this pleasantly novel research will render new insights into the fabrication strategies of nanomaterials and be of practical importance for the expanding biological application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.