Colloidal liquid metal alloys of gallium, with melting points below room temperature, are potential candidates for creating electrically conductive and flexible composites. However, inclusion of liquid metal micro‐ and nanodroplets into soft polymeric matrices requires a harsh auxiliary mechanical pressing to rupture the droplets to establish continuous pathways for high electrical conductivity. However, such a destructive strategy reduces the integrity of the composites. Here, this problem is solved by incorporating small loading of nonfunctionalized graphene flakes into the composites. The flakes introduce cavities that are filled with liquid metal after only relatively mild press‐rolling (<0.1 MPa) to form electrically conductive continuous pathways within the polymeric matrix, while maintaining the integrity and flexibility of the composites. The composites are characterized to show that even very low graphene loadings (≈0.6 wt%) can achieve high electrical conductivity. The electrical conductance remains nearly constant, with changes less than 0.5%, even under a relatively high applied pressure of >30 kPa. The composites are used for forming flexible electrically‐conductive tracks in electronic circuits with a self‐healing property. The demonstrated application of co‐fillers, together with liquid metal droplets, can be used for establishing electrically‐conductive printable‐composite tracks for future large‐area flexible electronics.
Surface patterning of liquid metals (LMs) is a key processing step for LM‐based functional systems. Current patterning methods are substrate specific and largely suffer from undesired imperfections—restricting their widespread applications. Inspired by the universal catechol adhesion chemistry observed in nature, LM inks stabilized by the assembly of a naturally abundant polyphenol, tannic acid, has been developed. The intrinsic adhesive properties of tannic acid containing multiple catechol/gallol groups, allow the inks to be applied to a variety of substrates ranging from flexible to rigid, metallic to plastics and flat to curved, even using a ballpoint pen. This method can be further extended from hand‐written texts to complex conductive patterns using an automated setup. In addition, capacitive touch and hazardous heavy metal ion sensors have been patterned, leveraging from the synergistic combination of polyphenols and LMs. Overall, this strategy provides a unique platform to manipulate LMs from hand‐written pattern to complex designs onto the substrate of choice, that has remained challenging to achieve otherwise.
Liquid metals can play an essential role in the generation of electrically conductive composites for electronic devices and environmental sensing and remediation applications. Here, a method for growing a polyaniline nanofibrous network at liquid metal nanoparticle interfaces is demonstrated for generating hybrid liquid metal–polymer nanocomposites. The investigation shows that an initial functionalization step of the liquid metal nanoparticles with a polymerization enhancer is essential for providing stable and specific nucleation points for the formation of the polyaniline nanofibrous network. The acidity and mechanical agitation conditions are carefully adjusted to control the fibrous polyaniline. The embedded gallium elements form an initial seeding layer around the liquid metal nanoparticles. The novel nanocomposites offer synergistic properties for environmental sensing and molecular separation applications. This study provides a road map for the direct synthesis of long organic molecular chains at the dynamic interfaces of liquid metals.
Room‐temperature synthesis of 2D graphitic materials (2D‐GMs) remains an elusive aim, especially with electrochemical means. Here, it is shown that liquid metals render this possible as they offer catalytic activity and an ultrasmooth templating interface that promotes Frank–van der Merwe regime growth, while allowing facile exfoliation due to the absence of interfacial forces as a nonpolar liquid. The 2D‐GMs are formed at low onset potential and can be in situ doped depending on the choice of organic precursors and the electrochemical set‐up. The materials are tuned to exhibit porous or pinhole‐free morphologies and are engineered for their degree of oxidation and number of layers. The proposed liquid‐metal‐based room‐temperature electrochemical route can be expanded to many other 2D materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.