Sennoside A (SA) is a bioactive component of Chinese herbal medicines with an activity of irritant laxative, which is often used in the treatment of constipation and obesity. However, its activity remains unknown in the regulation of insulin sensitivity. In this study, the impact of SA on insulin sensitivity was tested in high fat diet (HFD)-induced obese mice through dietary supplementation. At a dosage of 30 mg/kg/day, SA improved insulin sensitivity in the mice after 8-week treatment as indicated by HOMA-IR (homeostatic model assessment for insulin resistance) and glucose tolerance test (GTT). SA restored plasma level of glucagon-like peptide 1 (GLP1) by 90% and mRNA expression of Glp1 by 80% in the large intestine of HFD mice. In the mechanism, SA restored the gut microbiota profile, short chain fatty acids (SCFAs), and mucosal structure in the colon. A mitochondrial stress was observed in the enterocytes of HFD mice with ATP elevation, structural damage, and complex dysfunction. The mitochondrial response was induced in enterocytes by the dietary fat as the same responses were induced by palmitic acid in the cell culture. The mitochondrial response was inhibited in HFD mice by SA treatment. These data suggest that SA may restore the function of microbiota–GLP1 axis to improve glucose metabolism in the obese mice.
ObjectiveL-cell dysfunction is reported for GLP-1 reduction in type 2 diabetes. However, the mechanism of dysfunction remains unknown. In this study, we examined mitochondrial function in the mechanistic study in diet-induced obese (DIO) mice.SubjectsC57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks to establish the DIO model for GLP-1 reduction. The mice were then treated with berberine (BBR) (100 mg/kg/day) for 8 weeks to test the impact on GLP-1 expression. Mitochondrial activities of the colon enterocytes were compared among three groups of mice (lean, DIO, and DIO + BBR) at the end of treatment. Gut microbiota and short-chain fatty acids (SCFAs) were examined to understand the mitochondrial responses. A cellular model treated with palmitic acid (PA) was used in the mechanism study.ResultsA reduction in GLP-1 expression was observed in DIO mice with mitochondrial stress responses in the colon enterocytes. The mitochondria exhibited cristae loss, membrane rupture, and mitochondrial swelling, which was observed with an increase in ATP abundance, complex I activity, and deficiency in the activities of complexes II and IV. Those changes were associated with dysbiosis and a reduction in SCFAs in the colon of DIO mice. In the cellular model, an increase in ATP abundance, loss of mitochondrial potential, and elevation of apoptosis were induced by PA. All of the alterations in DIO mice and the cellular model were attenuated by BBR.ConclusionThe mitochondrial stress responses were observed in the colon enterocytes of DIO mice for GLP-1 reduction. The stress was prevented by BBR in the restoration of GLP-1 expression, in which BBR may act through direct and indirect mechanisms.
Objective: Parkinson’s disease (PD) is a chronic neurodegenerative disease involving non-motor symptoms, of which gastrointestinal disorders are the most common. In light of recent results, intestinal dysfunction may be involved in the pathogenesis of PD. Electroacupuncture (EA) has shown potential effects, although the underlying mechanism remains mostly unknown. We speculated that EA could relieve the behavioral defects of PD, and that this effect would be associated with modulation of the gut microbiota. Methods: Mice were randomly divided into three groups: control, PD + MA (manual acupuncture), and PD + EA. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was used to establish the mouse model of PD. Rotarod performance tests, open field tests, and pole tests were carried out to assess motor deficiencies. Immunohistochemistry was conducted to examine the survival of dopaminergic neurons. 16S ribosomal RNA (rRNA) gene sequencing was applied to investigate the alterations of the gut microbiome. Quantitative real-time polymerase chain reaction (PCR) was performed to characterize the messenger RNA (mRNA) levels of pro-inflammatory and anti-inflammatory cytokines. Results: We found that EA was able to alleviate the behavioral defects in the rotarod performance test and pole test, and partially rescue the significant loss of dopaminergic neurons in the substantia nigra (SN) chemically induced by MPTP in mice. Moreover, the PD + MA mice showed a tendency toward decreased intestinal microbial alpha diversity, while EA significantly reversed it. The abundance of Erysipelotrichaceae was significantly increased in PD + MA mice, and the alteration was also reversed by EA. In addition, the pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α were substantially increased in the SN of PD + MA mice, an effect that was reversed by EA. Conclusion: These results suggest that EA may alleviate behavioral defects via modulation of gut microbiota and suppression of inflammation in the SN of mice with PD, which provides new insights into the pathogenesis of PD and its treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.