Cardiovascular diseases account for the highest mortality globally, but recent advances in wearable technologies may potentially change how these illnesses are diagnosed and managed. In particular, continuous monitoring of cardiovascular vital signs for early intervention is highly desired. To this end, flexible wearable sensors that can be comfortably worn over long durations are gaining significant attention. In this review, advanced flexible wearable sensors for monitoring cardiovascular vital signals are outlined and discussed. Specifically, the functional materials, configurations, mechanisms, and recent advances of these flexible sensors for heart rate, blood pressure, blood oxygen saturation, and blood glucose monitoring are highlighted. Different mechanisms in bioelectric, mechano‐electric, optoelectric, and ultrasonic wearable sensors are presented to monitor cardiovascular vital signs from different body locations. Present challenges, possible strategies, and future directions of these wearable sensors are also discussed. With rapid development, these flexible wearable sensors will potentially be applicable for both medical diagnosis and daily healthcare use in tackling cardiovascular diseases.
Human‐interfaced electronic systems require strain‐resilient circuits. However, present integrated stretchable electronics easily suffer from electrical deterioration and face challenges in forming robust multilayered soft‐rigid hybrid configurations. Here, a bilayer liquid‐solid conductor (b‐LSC) with amphiphilic properties is introduced to reliably interface with both rigid electronics and elastomeric substrates. The top liquid metal can self‐solder its interface with rigid electronics at a resistance 30% lower than the traditional tin‐soldered rigid interface. The bottom polar composite comprising liquid metal particles and polymers can not only reliably interface with elastomers but also help the b‐LSC heal after breakage. The b‐LSC can be scalably fabricated by printing and subsequent peeling strategies, showing ultra‐high strain‐insensitive conductivity (maximum 22 532 S cm−1), extreme stretchability (2260%), and negligible resistance change under ultra‐high strain (0.34 times increase under 1000% strain). It can act as stretchable vertical interconnect access for connecting multilayered layouts and can be scalably and universally fabricated on various substrates with a resolution of ≈200 µm. It is demonstrated that it can construct stretchable sensor arrays, multi‐layered stretchable displays, highly integrated haptic user‐interactive optoelectric E‐skins, visualized heaters, robot touch sensing systems, and wireless powering for wearable electronics.
With the emerging need for human–machine interactions, multi-modal sensory interaction is gradually pursued rather than satisfying common perception forms (visual or auditory), so developing flexible, adaptive, and stiffness-variable force-sensing devices is the key to further promoting human–machine fusion. However, current sensor sensitivity is fixed and nonadjustable after fabrication, limiting further development. To solve this problem, we propose an origami-inspired structure to achieve multiple degrees of freedom (DoFs) motions with variable stiffness for force-sensing, which combines the ductility and flexibility of origami structures. In combination with the pneumatic actuation, the structure can achieve and adapt the compression, pitch, roll, diagonal, and array motions (five motion modes), which significantly increase the force adaptability and sensing diversity. To achieve closed-loop control and avoid excessive gas injection, the ultra-flexible microfiber sensor is designed and seamlessly embedded with an approximately linear sensitivity of ∼0.35 Ω/kPa at a relative pressure of 0–100 kPa, and an exponential sensitivity at a relative pressure of 100–350 kPa, which can render this device capable of working under various conditions. The final calibration experiment demonstrates that the pre-pressure value can affect the sensor’s sensitivity. With the increasing pre-pressure of 65–95 kPa, the average sensitivity curve shifts rightwards around 9 N intervals, which highly increases the force-sensing capability towards the range of 0–2 N. When the pre-pressure is at the relatively extreme air pressure of 100 kPa, the force sensitivity value is around 11.6 Ω/N. Therefore, our proposed design (which has a low fabrication cost, high integration level, and a suitable sensing range) shows great potential for applications in flexible force-sensing development.
Novel haptics technologies are urgently needed to bridge the gap between entirely physical world and fully digital environment to render a more realistic and immersive human–computer interaction. Current virtual reality (VR) haptic gloves either deliver limited haptic feedback or are bulky and heavy. The authors develop a haptic glove or HaptGlove, an untethered and lightweight pneumatic glove, that allows users to “physically” interact in a VR environment and enables both kinesthetic and cutaneous sensations naturally and realistically. Integrated with five pairs of haptic feedback modules and fiber sensors, HaptGlove provides variable stiffness force feedback and fingertip force and vibration feedback, allowing users to touch, press, grasp, squeeze, and pull various virtual objects and feel the dynamic haptic changes. Significant improvements in VR realism and immersion are observed in a user study with participants achieving 78.9% accuracy in sorting six virtual balls of different stiffnesses. Importantly, HaptGlove facilitates VR training, education, entertainment, and socialization in a reality–virtuality continuum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.